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Summary 
Climate change has serious implications for the management of water resources. The 
hydrologic cycle has been altered by the climatic change that has occurred as a result of 
both increased greenhouse gases and natural climate variability. Changes in rainfall and 
streamflow patterns in the south-west of Western Australia have had the effect of reducing 
the available water resources. As the population increases, so will demand for water 
supplies, and evaluating the effects of climate change is therefore important for the future 
management of water resources.  

This study is an extension of the Climate change, catchment runoff and risks to water supply 
in the south-west of Western Australia — or Stage 1 study — undertaken for the Australian 
Greenhouse Office (Berti et al. 2004). The Stage 1 study evaluated the effects of climate 
change on the Stirling Dam catchment in the south-west of Western Australia. Stage 1, which 
used a General Circulation Model (CSIRO Mk3 GCM) under the A2 (high emissions 
scenario), found that by mid-century there would be an 11% reduction in rainfall, resulting in 
a 31% reduction in annual catchment yield into Stirling Dam. This study assesses impacts of 
climate change on the Serpentine Dam catchment using four global climate models and 
compares their results. Two of the models were developed at CSIRO Australia (CCAM and 
Mk3), one at the Hadley Centre in the UK (HadAM3P) and one at the Max Planck Institute in 
Germany (ECHAM4). All used the A2 emission scenario, which corresponds to a 1.7 times 
increase in CO2 emissions by 2090. This is also the emission scenario used in Stage 1 of the 
study. Downscaled rainfall datasets from these GCMs were used as inputs into a catchment 
model, LUCICAT, in order to evaluate streamflow under the future climate. 

The results of this study (Stage 2) are based on averages from forty current and forty 
projected downscaled rainfall datasets for each of the GCMs. The CCAM and Mk3 results 
show 12–14% reductions in annual rainfall by mid-century. This corresponds to a 30–44% 
decline in streamflow. The HadAM3P, which modelled the 2070–99 period, shows a 24% 
decline of rainfall, corresponding to 69% streamflow reduction. The ECHAM4 shows a 24% 
decline of rainfall for the same period, but, due to inconsistencies, has not been used for 
streamflow analysis.  

Although this study has modelled only one of the IPCC emission scenarios, a range of other 
scenarios could be modelled. These results represent fairly extreme possible outcomes, as 
the A2 scenario corresponds to a constantly increasing emission rate. The majority of other 
scenarios tend to peak in mid-century, then stabilise by 2100.  

This study assumes no change to current land use, temperature and vegetation response to 
changes in CO2 concentrations.  
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1 Introduction 
Human-induced climate change is predicted to seriously affect many aspects of the 
environment, including water resources, with major implications for agriculture, industry and 
urban water supply. The population in Western Australia is expected to increase to over 
3 million by 2051 (ABS 2002), putting further pressure on water resources.  

Climatic variables exert a large influence on a catchment’s water balance, affecting rainfall, 
evaporation, streamflow and soil moisture as well as recharge to groundwater. The effects of 
climate change on streamflow will be seen at time scales that range from storm events to 
multi-decadal. It is important to document the seasonal variations of these changes as they 
may have more impact on catchment yield than the predicted annual changes (Stonefelt et 
al. 2000). 

The south-west of Western Australia has experienced declining rainfall since the late 1970s. 
Reduction in catchment rainfall often results in an amplified reduction in streamflow (Chiew & 
McMahon 2002). Reduced streamflows have been observed in the Perth water-supply 
catchments since the 1970s (Bari & Ruprecht 2003). The inflow into reservoirs supplying the 
Integrated Water Supply System (IWSS) decreased from an annual average inflow of 338 GL 
for the 1911–74 period to 177 GL for the 1976–96 period and then to 115  GL in the 1997–
2004 period (Water Corporation 2005b). For streams in high-rainfall areas, the flow duration 
at various flow rates has decreased (Rodgers & Ruprecht 1999).  

Many studies have increased our understanding of the potential impacts of climate change 
on surface water resources. Most have been completed globally; few have focused on 
Australia and fewer still on Western Australia. The studies usually employ General 
Circulation Models (GCMs), sometimes called Global Climate Models, to simulate 
atmospheric pressure, velocity, temperature and moisture through time to project possible 
climatic changes in future years. 

There has been modelling of climate-change scenarios using GCMs in numerous regions of 
the world (Arora & Boer 2001; Voss et al. 2002). The effects of climate change on extreme 
events have been studied in Northern Germany (Bronstert et al. 2002) and in New York City 
(Blake et al. 2000). Mean changes to rainfall and runoff have been studied in the United 
States (Wolock & McCabe 1999; Hay et al. 2000). Within Australia, there have been several 
studies modelling the effects of climate change on hydrology. Specific rivers studied have 
included the Macquarie River (Hassal & Associates 1998) and the Border River catchment 
(Ritchie et al. 2004). Other studies have compared the effects in different regions of Australia 
(Nathan et al. 1988; Chiew et al. 1995; Schnur & Lettenmaier 1998; Chiew & McMahon 
2002). In the south-west of Western Australia there have been a various climate-change 
studies (Viney & Sivapalan 1996; Rodgers & Ruprecht 1999; Evans & Schreider 2002; IOCI 
2002). Stage 1 of this study (Berti et al. 2004) focused on the Stirling catchment. 

Different GCMs often produce quite different outcomes despite modelling the same emission 
scenario. The accuracy of GCMs is highest at the global scale; however, they have also 
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been applied on regional scales, as the resolution of such models is of the order of 200 km 
(Hassall & Associates 1998; CIESIN 1995). When applied on a local scale, the GCM 
projections become more uncertain, as the resolution is too coarse to include local-scale 
features such as topography (Hassall & Associates 1998) and rainfall from convective 
systems.  

As decision making usually takes place at the regional or local scale, these GCM projections 
may lead to levels of uncertainty. A variety of methods can increase the spatial resolution of 
GCM projections and enable their application at smaller scales. These include increasing the 
resolution of the components of the GCM (IPCC 2001) as well as coupling the GCM with a 
regional climate model (RCM). RCMs have larger computational requirements.  
They run on finer spatial and temporal scales and enable the study of regional changes in 
climate (Suchita 2004). Another, used in Stages 1 and 2 of this study, is stochastic 
downscaling, which uses statistical methods to relate GCM characteristics to the local scale. 
The downscaled rainfall is used as input to hydrologic models to simulate the effects of a 
changing climate on river flow and subsequent storage yields. Stochastic downscaling was 
chosen in preference to using RCM precipitation directly as (1) it simulates individual gauge-
scale precipitation (2) it allows generation of multiple realisations (conditional on GCM 
atmospheric output) and (3) previous studies have found that RCMs do not reproduce 
measured precipitation statistics as well as stochastic downscaling (Wilby et al. 2000; 
Hay & Clarke 2003; Wood et al. 2004).  

Stage 1 analysed streamflow outputs generated from one GCM, the CSIRO Mk3, and 
reported the percentage change in catchment yield projected for the future scenario. In 
Stage 2, downscaled rainfall series from four GCMs have been used as data inputs to 
simulate the streamflows within the Serpentine Dam catchment, one of the main water-
supply catchments for the Perth Metropolitan Area. The purpose of this report is to compare 
results from the four GCMs and determine a range of projected outcomes rather than to 
calculate a single value for catchment yield reduction. 
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2 Catchment description 

2.1 Location 

The Serpentine catchment is approximately 55 km south-east of Perth, and includes the 
towns of Serpentine, Jarrahdale, Mundijong and Byford. The town of Serpentine was 
developed in the early 1890s as a result of the declaration of the Serpentine Agricultural 
Area. Jarrahdale was also developed at this time, being officially gazetted as a town site in 
1913.   

2.2 Land use  

This study focuses on the Serpentine Dam catchment (Fig. 2.1). The main land use is jarrah 
forest forming an upperstorey vegetation cover. Smaller trees and shrubs produce a 
significant understorey throughout the catchment. The catchment is largely forested, with 
only small parts cleared. Dieback is present within the catchment. The Jack Rocks 
subcatchment was mined for bauxite in the 1990s while parts of the Cameron West and 
Cameron Central subcatchments were logged in 1995/96 (Water and Rivers Commission 
1999). There has been selective logging within the Jayrup subcatchment (Water and Rivers 
Commission 1999). Alcoa currently has mine operations in the Jayrup subcatchment. The 
company has a mining tenement for all of the Serpentine Dam catchment, while others, 
including Hedges Gold, Moutier and Trovex, have mining tenements south of the catchment. 
South of Serpentine Dam, the subcatchments are mainly mined for bauxite. 

Fires influence land use within the catchment. Prescribed burning has a role in reducing the 
incidence of wildfires, regenerating native forests and conserving biodiversity. Hot wildfires 
convert much more surface vegetation and leaf litter to nutrient-rich ash and expose the soil 
surface to rainfall, which can increase the risk of soil erosion (NSW EPA 2003). Soils can 
become water repellent, which increases runoff and therefore nutrient and sediment 
transport into receiving waters (NSW EPA 2003). Chemicals mobilised from the fire can also 
enter streams (Martin 2001). The Department of Environment and Conservation has 
proposed that parts of the Serpentine Dam catchment will be subjected to prescribed burning 
over the 2006–09 period (CALM 2005). 

2.3 Elevations 

Topographic elevations vary from a maximum of 530 m AHD at the southern edge of the 
River Road subcatchment to a minimum of 250 m AHD at the dam outlet. Within the major 
subcatchments elevations vary widely; in particular, the eastern part of Big Brook and Jack 
Rocks at subcatchments 42 and 47 and subcatchments within River Road (Fig. A.2). 
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2.4 Climate 

The climate of the Serpentine catchment area is classified as temperate (Bureau of 
Meteorology 2005), with hot dry summers and cool wet winters. Rainfall is heavier in the 
western part of the catchment, as shown by the spatial distribution of mean annual rainfall 
(Fig. A.3) and mean monthly rainfall at subcatchments 1, 28 and 86 (Fig. A.4). Average 
annual rainfall varies from 680 mm in the east to 1150 mm in the west of the catchment.  

2.5 Serpentine Reservoir 

The Serpentine Reservoir was created when the Serpentine Dam was constructed in 1961. It 
has a catchment area of 664 km2 and a storage capacity of 138 million m3. The Serpentine 
Scheme began with the need for additional water-supply sources for industrial and urban 
use. It is one of many south-west WA reservoirs that provide water to the Integrated Water 
Supply System (IWSS). The water stored in the reservoir is released under controlled 
conditions and discharged into the lower Serpentine River and then into the Serpentine 
Pipehead Reservoir. Here, the water is piped under gravity through two 55-km pipelines to 
supply water to the Perth Metropolitan Area as part of the Integrated Water Supply System 
(IWSS) (Water Corporation 2005a).  

2.6 Rivers and gauging stations 

Three main streams enter the Serpentine Reservoir (Fig. 2.3). The Serpentine River is the 
main river, originating in the east of the catchment and then flowing north-west towards the 
reservoir. Big Brook is the main southern tributary, flowing from the south along the western 
edge towards the reservoir. The third significant stream enters from the north-east, 
originating from the Jack Rocks subcatchment. Two other minor streams also enter the 
reservoir.   

All tributaries flowing into the reservoir have water with salinity <150 mg/L TDS. The more 
distant streams are also fresh, including those of the Jayrup and Cameron Central 
subcatchments. This is typical of a forested catchment within the high-rainfall zone where the 
high rainfall develops a permanent flow of groundwater that allows most of the salt in the 
rainfall to discharge from the catchment without accumulating (Mayer et al. 2005). In the drier 
eastern areas salt may accumulate in the soil but is rarely mobilised into the streams unless 
the forest is permanently cleared.  

 



Water Resource Technical Series                                                                        Projected impacts of climate change WRT 36 

 

 

 

Department of Water  5 

Evidence suggests that the changing climate has affected streamflow into Serpentine Reservoir. The 
average annual (modelled) inflow to the reservoir over the 1912–94 period was 66 GL; when averaged 
over 1975–94, the figure falls to 41 GL (Bari & Ruprecht 2003). The salinity of the reservoir is 
approximately 195 mg/L TDS (Figure 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Location of the Serpentine Reservoir catchment 
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Figure 2.2  Modelled and observed flows to the Serpentine Reservoir 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.3  Stream gauges and rainfall stations throughout the Serpentine catchment 

 

River Road (614035) is the only gauging station situated on the Serpentine River. It lies 
within the study area, approximately halfway between the dam and the origin of the river 
(Fig.  2.3). Site data indicates that the river flows for approximately six months of the year. 
The Jack Rocks gauging station (614031) is situated approximately 5 km from where the 
Jack Rocks tributary meets the Serpentine River. In the 1980s and early 1990s this stream 
flowed on average for eleven months of the year, but by the middle to late 1990s it flowed 
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only about nine months of the year. The gauging station at Big Brook (614037) is the most 
downstream gauge along this tributary, 15 km from the dam. Here, the river flows for 
approximately six months of the year. At the Jayrup gauging station (614093), about 6 km 
upstream of Big Brook, water flows for approximately five months of the year. The Cameron 
Central gauging station (614066) is further upstream, where there is flow for about four 
months of the year. The Cameron West gauging station (614064) is situated along a minor 
stream that meets the main tributary at Cameron Central, where flow is recorded for 
approximately four months of the year. 

2.7 Runoff characteristics 

The mean runoff throughout the catchment varies spatially between 1% and 10%. It is similar 
at the River Road and Big Brook stations, at just over 3%, while at the Jack Rocks station the 
runoff rate equates to approximately 10% (Table 2.1). Rainfall and runoff relating to the 
reservoir are representative of the entire catchment. Further information regarding observed 
and modelled runoff characteristics can be read in Section 4.3.1. 

 

Table 2.1  Average annual rainfall, streamflow and runoff rate at the reservoir and all gauging 
stations for corresponding period of record 

Station 
No. 

Name Recorded 
data 

Catchment area 
(km2) 

Rainfall 
(mm) 

Runoff 
(mm) 

Streamflow  
 (GL) 

Runoff rate 
(%) 

614031 Jack Rocks 1981–1998 55 1024 100 5.6 9.8 

614035 River Road 1982–1998 243 806 28 6.8 3.5 

614037 Big Brook 1983–2004 149 937 31 4.6 3.3 

614093 Jayrup 1995–2003 46 911 17 0.8 1.8 

614066 Cameron 
Central 

1992–2003 5 875 7.5 0.04 0.86 

614064 Cameron West 1991–2003 2 982 5.3 0.01 0.54 

 Serpentine Dam 1975–2003 664 921 57 38 6.2 
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3 Climate scenarios 
General Circulation Models (GCMs) are sophisticated computer programs that simulate the 
physical processes of the atmosphere and oceans. They solve the equations of conservation 
of mass, momentum and energy for many points on a three-dimensional grid covering the 
globe. Climate-change projections are obtained from GCM simulations that use projected 
future concentrations of greenhouse-gases and aerosols. ‘Emissions scenarios’ set the rate 
of change of the greenhouse gas and aerosol concentrations used in these simulations. 
These emission scenarios have been determined by the Intergovernmental Panel on Climate 
Change (IPCC) as representative of possible future paths of world population, economic 
growth, technological development and energy use (Bureau of Meteorology 2003). The 
distinction between ‘projections’ and ‘predictions’ is important. As there is no way to 
determine future emissions with any degree of certainty, it is impossible to ‘predict’ future 
climate.  

Six scenario groups emerged from the Third Assessment Report of the IPCC, with different 
levels of emphasis on economic, regional, environmental and global issues (Fig. 3.1). These 
are the A1 (A1FI, A1T, A1B), A2, B1 and B2 scenario ‘families’. 

 

Economic 

 

A1 

 

A2 

 

 

B1 

 

B2 

 

 

 

 

 

Global 

Environmental 

 

 

 

 

Regional 

Figure 3.1  Emission scenario families 

The A1 scenario family describes a world with rapid economic growth, new technologies and 
increased cultural and social interactions. The global population is set to peak at 8.7 billion 
by 2050 and to decline to 7 billion by 2100. This family splits into three groups distinguished 
by the direction of future energy sources: A1FI is fossil-fuel intensive, A1T uses non-fossil 
energy sources and A1B uses a balance (IPCC 2000). 
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The A2 scenario is at the higher end of emissions scenarios, with continued high rates of 
greenhouse-gas emissions reaching 1320 parts per million by volume (ppmv) by 2100 
(CCCMA 2004). It is characterised by a regionally-oriented, self-reliant, heterogeneous world 
with continuously increasing populations (15 billion by 2100) and a focus on regional 
economic development rather than technological change and global environmental concerns.  

The B1 scenario family describes a world with an emphasis on global sustainability, with a 
move towards an information-focused economy and resource-efficient technologies. The 
global population peaks in mid-century and then declines (IPCC 2000). 

The B2 scenario family has an emphasis on local sustainability, and a local and regional 
focus on environmental protection and social equity. Economic development is considered 
intermediate, technological change is diverse and global population increases continuously 
to 10.4 billion. The CO2 concentration for the B2 scenario by 2100 is 915 ppmv (CCCMA 
2004). 

This study uses climate-change projections obtained from four climate models and the A2 
IPCC emissions scenario. Three fully coupled GCMs were the Hadley Centre HadAM3P 
(UK), the Max Planck Institute ECHAM4 (Germany) and the CSIRO Mk3 (Australia). The 
fourth was the Conformal Cubic Atmospheric Model (CCAM, CSIRO [Australia]) which is a 
stretched-grid atmospheric GCM linked to the Mk3 through far-field forcing. CCAM gives the 
ability to assess gains achieved by dynamical downscaling prior to statistical downscaling. 
Table 3.1 presents the resolutions of the GCMs. 

Table 3.1  Resolution of GCMs 

Organisation Time period GCM name Resolution  
1960–1989 2070–2099 HadAM3P AGCM 1.875° long x 1.25° lat with 19 vertical levels Hadley Centre 
  HadCM3 OGCM 1.25° x 1.25° with 20 vertical levels 
1975–2004 2035–2064 ECHAM4 AGCM 3.75° x 3.75° with 19 vertical levels Max Planck 

Institute   HOPE-G OGCM 2.80° x 2.80° with 20 vertical levels 
1975–2004 2035–2064 Mk3 AGCM 1.875° x 1.875° with 18 vertical levels CSIRO 
  Mk3 OGCM 1.875° lon x 0.93° lat with 31 vertical levels 

CSIRO 1975–2004 2035–2064 CCAM 60 km over Australasia with 18 vertical levels 

From each GCM A2 transient run, a ‘current’ and a ‘future’ period time slice is extracted. As 
in the initial study (Berti et al. 2004), the current period used for the Mk3, CCAM and 
ECHAM4 models is 1975–2004. The HadAM3P output is for the 1960–89 period, as daily 
output for the 1975–2004 period was not available. The future projections for the Mk3, CCAM 
and ECHAM4 models are for the 2035–64 period, while the HadAM3P uses 2070–99. The 
IPCC A2 scenario projects an approximate 1.7-fold increase in CO2 (equivalent) by 2050, 
which is the midpoint of the 2035–64 time slice and a 2.4-fold increase by the end of the 21st 
century. 
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3.1 CSIRO Mk3 GCM 

The CSIRO Mk3 couples an atmospheric GCM (atmospheric, land and sea-ice components) 
to an ocean GCM derived from the GFDL Modular Ocean Model. The Mk3 allows for the 
interactions of different components, taking into account the different time scales of each. 
Major improvements over previous model generations (e.g. the Mk2) include better physical 
parameterisations, thus removing the need for flux adjustments, and inclusion of a prognostic 
cloud scheme, allowing the model to generate physically-based cloud properties (Gordon et 
al. 2002).  

The Mk3 atmospheric GCM (AGCM) has been developed specifically to use horizontal 
spectral resolution T63 (1.8750 EW x 1.8750 NS) with 18 vertical levels. The number of grid 
boxes in the horizontal for the Mk3 AGCM (nominally T63) is thus 18 432. This is a 
substantial increase on the number of horizontal grid boxes (3584) as used in the Mk2 
model. The dynamic framework of the atmospheric model is based upon the spectral method 
(Bourke 1974), with the equations cast in the flux form that conserves predicted variables 
(Gordon 1981). An important model development concerns the treatment of atmospheric 
moisture within the Mk3 model. The earlier method entailed having the atmospheric water 
vapour carried as a grid field with only the advection of the vapour being computed by the 
spectral method. This has been replaced by a semi-Lagrangian transport method (Gordon et 
al. 2002). 

The oceanic component of the CSIRO Mk 3 model is based on the code of the GFDL 
Modular Ocean Model (MOM), version 2.2 (Pacanowski 1996). It supersedes the oceanic 
code in the CSIRO Mk 2 model, which was based on the earlier GFDL Bryan-Cox code (Cox 
1984). The MOM 2.2 has several major improvements in model physics and numerics 
compared to the earlier version. The oceanic component has horizontal resolution matching 
that of the atmospheric model’s (T63) in the east-west direction, and twice that in the north-
south direction. Thus the grid spacing is 1.8750 longitude by 0.930 latitude (approximately: 
latitude is on a Gaussian grid). The ocean grid boxes have the same horizontal layout, but 
with two ocean model grid boxes per AGCM grid box meridionally. There are 31 levels in the 
vertical, with the spacing of the levels gradually increasing with depth, from 10 m at the 
surface to 400 m in the deep ocean. 

3.2 CSIRO CCAM  

This study also examines outputs from the CSIRO Conformal-Cubic Atmospheric Model 
(CCAM) which is run at high spatial resolution over Australia with far-field forcing from the 
Mk3 GCM A2 run. CCAM is a two-time-level, semi-Lagrangian, semi-implicit, finite-difference 
primitive equations model, formulated on the quasi-uniform conformal-cubic grid. It includes a 
variable-resolution capability for modelling the atmosphere at fine resolution over selected 
regions and is run at a horizontal resolution of 60 km over the Australasian region (McGregor 
2005). 
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Using a fine resolution climate model is termed ‘dynamical downscaling’. Studies assessing 
the suitability of dynamically downscaled output for use in hydrologic modelling have often 
concluded that statistical downscaling is necessary to produce rainfall time series that 
reliably reproduce the observed rainfall properties (Wilby et al. 2000; Wood et al. 2004).  

 

3.3 Hadley Centre HadAM3P GCM 

HadAM3P is an atmospheric general circulation model, developed primarily to assess 
European climate change. It focuses on surface air temperature, precipitation and snow 
mass, and has a higher resolution than the previous HadAM3. Output is in the form of high-
resolution global time-slice experiments for both a control (1960–89) and a future scenario 
(2070–99) (Rowell 2005). 
 

3.4 Max Planck Institute ECHAM4  

The ECHAM4 is the atmospheric component of the atmospheric/ocean-coupled model, 
ECHO-G. The ECHO-G was driven by historical climate data and focused on reconstructing 
observed Northern Hemisphere temperatures. Von Storch et al. (2004) emphasise that the 
most important aspect of the model is that it simulates a constant and reasonable climate 
and that the applied forcing is within reasonable values. The ocean component of the  
ECHO-G is referred to as the HOPE-G. 
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4 Methodology 

The objective of this study was to assess possible future changes in catchment yield to the 
Serpentine Dam catchment resulting from projected future climate changes from four climate 
models. Firstly, the LUCICAT model was used to represent the current rainfall – runoff 
processes occurring within the catchment. This was achieved by calibrating LUCICAT 
against observed datasets. Current and future rainfall datasets were then produced by 
statistically downscaling the atmospheric predictors extracted from the four GCMs. These 
statistically downscaled rainfall simulations were then used to run the LUCICAT model in 
order to simulate the runoff response that would occur within the Serpentine catchment. 
Following from this, the change in catchment yield of the catchment was estimated. A 
conceptual figure of this methodology relating to the current-climate analysis is presented 
below (Fig. 4.1). The future climate analysis is similar, with the exception that modelled GCM 
streamflow for future conditions is compared with the modelled GCM streamflow from the 
current climate. 
 

 

 

 

 

Figure 4.1  Conceptual figure of methodology 

4.1 Downscaled rainfall 

Downscaled rainfall data was produced for a selected network of 31 meteorological stations 
across south-west Western Australia (Berti et al. 2004). Station selection reflected data 
availability and coverage of important surface-water catchments, groundwater recharge 
areas and relevance to agricultural production. 

A statistical downscaling process was applied to each GCM in order to generate precipitation 
time series. The non-homogeneous hidden Markov model (NHMM) of Hughes et al. (1999) 
was used to downscale atmospheric predictors to multi-site daily precipitation occurrence; 
then conditional multiple linear regression was used to simulate multi-site daily precipitation 
amounts (Charles et al. 1999). The NHMM predicts multi-site patterns of daily precipitation 
occurrence as a finite number of ‘hidden’ (i.e. unobserved) weather states. The temporal 
evolution of these daily states is modelled as a first-order Markov process with state-to-state 
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transition probabilities conditioned on a small number of synoptic-scale atmospheric 
predictors such as sea-level pressure. 

By determining distinct multi-site daily precipitation occurrence patterns, rather than 
atmospheric circulation patterns, the NHMM captures much of the spatial and temporal 
variability of daily multi-site precipitation occurrence records. For each weather state of a 
selected NHMM, precipitation amounts at each site are modelled by regressions of 
transformed amounts on precipitation occurrence at key neighbouring sites. This approach 
captures both the first- and second-order moments (i.e. mean and variability) of the daily 
precipitation data (Charles et al. 1999). 

The model for generation of multi-site daily temperatures (maximum and minimum) is fitted 
subsequent to the NHMM selection, with parameters conditional on the weather states. It 
uses a weather-generator approach (Wilks & Wilby 1999), with multi-site daily residuals of 
temperature simulated as a multivariate normal process, maintaining inter-site cross-
correlations and at-site lag-1 auto-correlations.  

The NHMM was fitted to observed data for 1978 to 2002 as described in Berti et al. (2004). 
The atmospheric predictors used in fitting are ‘centred’, i.e. their means are subtracted 
(Hughes et al. 1999). Similarly, the atmospheric predictors extracted from the climate models 
have their current period means subtracted from both the current and future periods. This is 
a form of bias correction, allowing direct comparison between the climate model current 
period and the observed data of the fitting period (Timbal & McAvaney 2001). In the case of 
HadAM3P, centring the 1960–89 predictors also produces predictor series with zero means. 
Thus the downscaled rainfall from the HadAM3P current period can be compared directly to 
the downscaled rainfall series from the other GCMs for the current period. 

4.2 Application of the LUCICAT model  

The LUCICAT model was used as a tool to estimate the effects of different climate 
projections on the catchment yield of Serpentine Reservoir (Bari & Smetten 2004; Beverly et 
al. 2005; Bari & Smettem 2006a & b; Charles et al. 2007) In order to do this, the model was 
prepared and calibrated first as described in Appendix A. The model was then used to 
simulate streamflows using rainfall data representing various climate projections, and the 
results were compared to a simulation using rainfall for the period 1964–2004. Further 
information regarding the input files can be read in Appendix A, Application of LUCICAT 
model to the Serpentine Reservoir catchment (Fig. 4.1). 

4.3 LUCICAT calibration  

The subcatchments modelled ranged in area from 1.91 km2 to 16.42 km2. The model was 
calibrated manually over the period 1981–2004, as data from gauging stations were recorded 
only during this period. The base parameter set was taken from the LUCICAT modelling of 
the Helena catchment. In the final calibration parameter set, two of the parameters varied 
across the catchment: the infiltration threshold, which varied from 0.0001 in the high-rainfall 
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area near Jack Rocks to 0.0079 and 0.0091 in the smaller experimental catchments of 
Cameron Central and Cameron West respectively. Topsoil thickness varied from 1.9 m in the 
east part of the catchment to 2.9 m at the dam outlet. The topsoil thickness at the Cameron 
West and Central subcatchments increased to 3.8 m and 3.5 m respectively. Other 
parameters are shown in Table A.1. 

Groundwater level  

Simulated groundwater levels in all subcatchments peak between 1968 and 1975 and then, 
in most, steadily decrease. Groundwater reaches the surface only in some subcatchments. 
In subcatchments 48 and 49 groundwater reaches the surface in 1974 and remains near the 
surface for the rest of the simulated period. The groundwater in subcatchments 81, 83 and 
85 also discharges to the surface and into streams for long periods of time. This is a realistic 
result, as the mean annual rainfall in these subcatchments is higher than 1000 mm. 

Annual runoff 

There was a good correlation between the observed and modelled annual hydrographs at all 
gauging stations. As shown in Figure 4.2, the annual runoffs at (a) Jayrup and (b) River Road 
are predicted well, in the range of 0–60 mm/year and 5–80 mm/year respectively. Less 
accurate are runoffs for the smaller subcatchments (c) Cameron West and (not shown) 
Cameron Central. The calibration plots of the remaining gauging stations, as well as an in-
depth analysis of annual streamflow trends for all gauging stations, are described in 
Appendix A. 

The LUCICAT model simulated the high-flow years (1991 and 1996) well, and was more 
successful in larger catchments. The 1996 modelled annual flows at the Big Brook and River 
Road gauging stations were within 3% and 4% respectively of observed flows. The 1991 
modelled flows at Big Brook, Jack Rocks and River Road were within 6%, 4% and –6% 
respectively of observed flows. The annual modelled flows of the smaller catchments, 
Cameron West and Cameron Central, followed the trend of the observed data. 

The year 1997 was a low-flow year. The 1997 modelled runoff at River Road is 4 mm higher 
than the observed flow, with a high 48% difference. Similarly, the modelled value for Big 
Brook is 6 mm, or 63% higher than the observed value. 
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Figure 4.2  Observed and modelled annual runoff at (a) Jayrup, (b) River Road, (c) Cameron 
West, (d) Serpentine Dam  

The accuracy of the dam-outlet calibration is difficult to determine, as the ‘observed’ data for 
this site are calculated using a water-balance approach, which takes into account the release 
of water from the dam. The LUCICAT simulations are similar to the water-balance 
calculations, supporting the accuracy of the LUCICAT results.  

As discussed for the examples above, LUCICAT models runoff well at all magnitudes. The 
magnitude of annual runoff at gauging stations varies, with Jack Rocks recording the highest 
and Cameron West and Central the lowest. Despite the differences in magnitude, the 
accuracy of each calibration is good, ranging over 2–7%, with the model results on average 
5% greater than the observed records (Table A.3). The percentage changes correspond to 
the average annual runoff for the period of record of the individual sites. The accuracy of the 
LUCICAT predictions is best displayed in Figure A.8, where the relationships between the 
observed and modelled annual runoffs are shown. Jayrup and River Road gauging stations 
have R2 values of 0.97 and 0.98 respectively. The correlations between observed and 
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modelled flow at the Cameron West and Cameron Central gauging stations are lower, at 
0.88 and 0.84 respectively.  

An overview of the relationship between observed and modelled flow can be seen in Figure 
4.3 which plots mean annual observed runoff against mean annual modelled runoff for all 
gauging stations. As can be seen, LUCICAT is able to simulate the observed runoff at all 
magnitudes, and the bias in the trendline indicates that the modelled values are higher than 
the observed at the high magnitudes. This is also supported by the statistics in Table 4.1, 
with the 90th percentiles and means generally slightly higher than the observed datasets.  
 

Figure 4.3  Scatter graph of mean annual observed and modelled runoff for all gauging stations  

Table 4.1  Observed and modelled annual runoff statistics (mm) 

Gauging station Data period 10th percentile Median Mean 90th percentile CV 

  Obs. Mod. Obs. Mod. Obs. Mod. Obs. Mod. Obs. Mod.

Big Brook 1983–2004 10.0 13.8 23.5 24.8 30.8 31.5 63.2 67.1 0.7 0.7

Jayrup 1995–2003 4.8 4.9 15.5 16.8 16.9 17.8 28.6 27.4 0.9 0.9

River Road 1982–1998 10.6 12.6 15.9 19.5 28.0 29.0 56.0 60.9 0.8 0.8

Jack Rocks 1981–1998 55.5 55.5 85.3 86.8 100.3 104.5 162.1 176.2 0.4 0.5

Cameron Central 1992–2003 1.9 1.6 5.6 6.4 7.5 8.0 12.3 8.7 0.9 1.2

Cameron West 1991–2003 0.5 0.1 3.2 4.0 5.3 5.6 14.8 16.2 1.3 1.2

Dam inflow (WBAL) 1975–2003 30.5 24.8 55.5 44.1 55.0 54.9 92.1 102.2 0.5 0.6
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Monthly runoff 

Streamflow was also calibrated at the monthly scale, with good results. The Jack Rocks 
hydrograph is shown in Figure 4.4. LUCICAT tended to model higher than observed values 
for high-flow events (greater than 40 mm/month) and was very accurate with the intermediate 
flows (15–40 mm/month). Accuracy was lower in the smaller subcatchments, particularly the 
Cameron Central gauging station. At smaller scales, small modelling differences (1 mm) can 
lead to large percentage differences. This is also reflected in the correlation coefficients. The 
R2 correlation between the observed and modelled monthly flows at River Road and Jack 
Rocks were 0.97 and 0.96 respectively. The correlation was also high at Big Brook (0.95) 
and Jayrup (0.94). The correlation was not as high at the Cameron sites, with coefficients of 
determination 0.80 and 0.85 at Cameron Central and West respectively. Further information 
regarding statistics and trends of monthly streamflow calibration can be found in Appendix A. 
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Figure 4.4  Observed and modelled monthly runoffs at Jack Rocks gauging station 

The modelled inflow into the dam was not calibrated against an observed dataset, but 
compared with output from a water-balance model (WatBal). Figure 4.5 illustrates that, 
during peak runoff events, LUCICAT simulates higher flows than the water-balance data. For 
the low runoff events, the LUCICAT flows are below those of the water-balance dataset.  

  

Figure 4.5  Monthly LUCICAT and water-balance-modelled dam inflow 

Daily streamflow  

At all gauging stations, the general pattern of the hydrographs was simulated well by 
LUCICAT. The daily hydrographs at the Jack Rocks, Cameron Central, Big Brook and River 
Road gauging stations are displayed in Figure 4.6, with the remaining daily hydrographs and 
analyses in Figure A.10. In some hydrographs LUCICAT models higher flows than observed 
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and earlier ‘cease-to-flow’. The gauging stations at the smaller subcatchments, Cameron 
West and Cameron Central, recorded lower streamflows. For these gauging stations, 
LUCICAT tended to predict higher runoff than observed. 

The modelled and observed daily hydrographs of the Jack Rocks gauging station correspond 
well. Daily runoff is high at this site, recording a maximum of 7.4 mm in 1987 (Fig. 4.6a). For 
all years, LUCICAT correctly models the duration of flow, picking up all runoff events. There 
is a tendency for LUCICAT to model higher than observed values during high runoff events, 
such as those in 1981 and 1996. For example, in 1981 LUCICAT models 9.4 mm of runoff for 
a 4.9 mm event. There is also a tendency for the baseflow component of the hydrograph to 
be greater than observed in the early part of the year and less than observed in the latter 
part.  

The Cameron West and Central subcatchments, being first order, experience very low flows 
and have small mean annual runoff rates of 0.54% and 0.85% respectively. Due to the small 
scale of streamflow, small variations from observed data (<1 mm) appear to have a high 
magnitude of error. The Cameron Central calibration is quite well matched. The duration and 
magnitude of runoff in 1997 and 2000 is predicted very well. There are some years (1992, 
1993, 1995) when the modelled flow begins later than observed. In other years (1994, 1999) 
the first runoff event is missed, and as a result records of modelled runoff begin later than 
observed (Fig. 4.6b). At this site, LUCICAT models runoff better in the over-0.4 mm range.   

The modelled and observed daily flows correspond well at both the Big Brook and River 
Road gauging stations (Figs. 4.6c & d) and comparisons between modelled and observed 
data at these gauging stations are similar. At both sites, LUCICAT models the duration of 
flow well, and also tends to model higher than observed runoff during peak events. During 
the dry conditions of 2001, modelled runoff is higher than observed at the Big Brook gauging 
station but is correctly modelled in the dry conditions in 1987. The modelled data at both 
sites can at times show drier conditions towards the end of the hydrograph. At Big Brook this 
is particularly the case for 1990, 1992 and 1993, while at River Road, this occurs in 1986 and 
1992.   
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Figure 4.6  Observed and modelled daily streamflow at (a) Jack Rocks, (b) Cameron Central, (c) 
Big Brook and (d) River Road 

Flow duration  

Flow duration curves have been produced for all the gauging stations, with those for Jack 
Rocks and Cameron West shown in Figure 4.7. The plots show a good match for the median 
to high flows and a deviation from the observed flow in the low-flow periods. Further plots 
and description of flow duration for other gauging stations can be seen in Figure A.11.  
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Figure 4.7  Flow duration curves for (a) Jack Rocks and (b) Cameron West 

Reservoir inflow 

The monthly inflow into the Serpentine Dam was calculated using two different methods. 
LUCICAT was used to compute the monthly inflow into the reservoir. The other method was 
using a reverse water-balance calculation, which takes into account rainfall, pan evaporation, 
storage-level change, reservoir releases and scour. A comparison of the cumulative monthly 
inflows, illustrated in Figure 4.8, shows that generally the two curves fit well, with mean 
annual values for the LUCICAT and water-balance data during the 1975–2003 period at 54.9 
and 55.0 mm respectively. Due to different methods of calculation, at times the LUCICAT 
values and water-balance-calculated data differ.  

The runoff statistics show some variations between the two datasets (Table 4.1). The 90th 
percentile is higher for LUCICAT (102 mm) than for water balance (92 mm), indicating that in 
high-flow events LUCICAT may predict higher than observed flow. A higher LUCICAT 
maximum value of 116 mm opposed to 103 mm also supports this. The 10th percentile is 
higher for the water-balance data (31 mm) than for LUCICAT (25 mm). This indicates that 
during low-flow events LUCICAT may have a tendency to predict a lower runoff than 
estimated by the water balance method. LUCICAT models a smaller minimum inflow (3 mm) 
than water balance (5 mm), also supporting this idea. These two characteristics were also 
noted in the monthly inflows (Fig. 4.5).  

 

 

(a) (b) 
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Figure 4.8  Cumulative LUCICAT and water-balance monthly dam inflows  

 

Table 4.2  Runoff statistics of the LUCICAT and water-balance datasets 

Runoff statistic LUCICAT (1975–2003) 

(mm) 

Water balance (1975–2003) 

(mm) 

Mean 54.9 55.0 

Median 44.1 55.5 

10th Percentile 24.8 30.5 

90th Percentile 102.2 92.1 

Coefficient of variation 0.6 0.5 

Standard deviation 31.5 26.2 

 

Catchment water balance 

A catchment water-balance assessment was undertaken for the Serpentine Dam catchment 
(Table 4.3). The water balance shows the partitioning of the model inputs and outputs in 
terms of rainfall, flow components, transpiration and evaporation from soil. Annual data were 
averaged over the time period 1975–2003. Interflow comprises the majority of the 
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streamflow, at 76%, with baseflow contributing least (3%). Average annual transpiration is 
quite high, at 721 mm. During the simulation period, there was a storage change of 2 mm. 

Table 4.3  Water-balance components based on modelling results 

Water balance component Division Average  

(1975–2003) 

(mm) 

Rainfall Total 921 

Soil evaporation  17 

Transpiration  721 

Interception  121 

Streamflow* Total 61.0 

 Surface runoff 13.4 

 Interflow 48.2 

 Baseflow 2.0 

Storage change  –2 

*Total streamflow is less than the sum of the individual streamflow components due to transmission and 

evaporation losses. 

 

4.3.1 Runoff characteristics 

Modelled mean annual runoff followed a similar spatial distribution to mean annual rainfall, 
increasing from upstream to downstream (Fig. 4.9). A summary of the runoff at the gauging 
stations is shown in Table 2.1. The two areas of the catchment with the lowest runoff (less 
than 20 mm/year) are the upstream section of the River Road catchment (subcatchments 1–
15) and the upper section of the Jayrup catchment (subcatchments 58–65). This may be due 
to any combination of the low rainfall in these areas, the small catchment areas (2–10 km2), 
soil properties (infiltration capacity, porosity and hydraulic conductivity) and evaporation 
rates.  

Generally, the eastern side of the catchment has lower runoff than the western side. 
However, runoff in subcatchments 14, 18 and 19 slightly higher than at nearby 
subcatchments can be attributed to the convergence of streams and tributaries. Another area 
(subcatchments 23, 24, 25) also has higher runoff than nearby subcatchments. This area, on 
the edge of the catchment, has an area of high elevation. The higher runoff can therefore be 
attributed to steep gradients. Such subcatchments characteristically have high runoff, as 
flows from different points in the catchment reach the outlet at the same time. Runoff 
increases towards the reservoir. The Jack Rocks catchment has high runoff rates (in the 
range of 100–130 mm/year) which can be attributed to high rainfall in this area as well as 
large areas of impervious ground (the Department of Water’s internal database classifies 
soils in the north-eastern corner of the subcatchment as ‘steep granitic ranges and hills with 
bare rock’). The runoff at the dam is highest, at approximately 210 mm/year.  
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Figure 4.9  Modelled mean annual runoff 1975–2003 
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5 Results of GCM downscaling 

5.1 Rainfall 

When running LUCICAT using the downscaled rainfall, only four stations of the 31 
downscaled rainfall sites across the south-west of Western Australia were close enough to 
the Serpentine Dam catchment to be used for calculating the spatial distribution of daily 
rainfall: Serpentine (009039), Jarrahdale (009023), Wandering (010648) and Dwellingup 
Forestry (009538) (Fig. 2.3). None of the stations is within the catchment.  

Using the CCAM data from only these four sites, a spatial distribution of rainfall was 
calculated using the Dean and Snyder method (1977). The distribution was derived from data 
observed at 31 rainfall stations (Fig. A.3). As a result, the distribution calculated using the 
CCAM data for the current climate did not reflect that created using observed data. Due to 
this, further analysis was done to form a relationship between each subcatchment and each 
of the four rainfall stations. This relationship was then used to create the spatial distribution 
of rainfall for all GCM downscaled rainfall datasets. More information regarding this 
methodology can be found in Appendix B. 

There are 100 simulations of 30 years of downscaled rainfall data corresponding to each 
GCM for both a current and a future scenario. Forty simulations were used in this study for 
data analysis. The statistical significance of this sample size is discussed in Appendix C. The 
following analysis focuses on the catchment aggregate rainfall evaluated at subcatchment 
86, which represents the whole Serpentine Dam catchment. Each of the downscaled rainfall 
datasets for the current climate was compared with its observed current-climate dataset 
(1975–2004) as well as its corresponding future scenario. Monthly rainfall plots and 
cumulative monthly rainfall plots were developed for the observed data as well as the current 
and future downscaled rainfall datasets.  

Observed monthly rainfall refers to the monthly rainfall data computed using LUCICAT, 
averaged over the 1975–2004 period. For example, observed January rainfall is the mean 
rainfall for all Januaries over that 30-year period. Monthly means of rainfall were also 
developed for each GCM for both the current climate and the future climate. Firstly, mean 
monthly rainfall for the 30-year period was calculated for each simulation. This produced 40 
datasets of monthly rainfall. An average of these 40 datasets was then taken in order to 
illustrate the range of the simulations. The ‘annual rainfall’ is the sum of these monthly 
rainfalls.  
 

5.1.1 Cumulative rainfall — current 

When analysing climate data, a large time period is required in order to take into account the 
natural climate variability. As a result, the following analysis has focused on the cumulative 
rainfall at the end of the 30-year simulation period. The downscaled rainfall from all GCMs for 
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the current climate was compared to the observed data for 1975–2004 (Fig. 5.1), with the 
last 7 years of simulations shown enlarged. Generally, simulations for the first 10 years of the 
downscaled rainfall deviate most from the observed data, with the latter 20 years 
corresponding well. A plot of the percentage differences between the observed data and 
each of the current-climate datasets at the end of the 30-year period is shown in Figure 5.2. 
The figure also shows the percentage differences between the current climate and the 
corresponding future climate. The error bars show the range of percentage differences from 
the 40 simulations. The downscaled mean of those three and observed rainfall are shown in 
Table 5.1.   
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Figure 5.1  Cumulative rainfall — current period  
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ECHAM4 

The ECHAM4 downscaled rainfall shows the greatest deviation from the observed data. At 
the end of the 30-year period, the average of the ECHAM4 cumulative rainfall is 14% higher 
than the observed. This is mainly due to high rainfall during the first 10 years, with the trend 
in the following 20 years being similar to the observed data. This is reflected in the fact that, 
from 1985 to 2003, the mean annual ECHAM4 rainfall is 984 mm, compared to the observed 
928 mm, which corresponds to a 6% difference. Due to the difference in the two datasets, 
downscaled rainfall from this GCM was not used to generate streamflow in LUCICAT. For 
more information see Section 6.1.1. 

CSIRO Mk3 

The maximum, mean and minimum of the Mk3 simulations are plotted in Figure 5.1. At the 
end of the 30-year simulation period, the mean of the Mk3 simulations is 6% higher than the 
observed. The minimum of the simulations is similar in magnitude to the observed data. As 
the case of the ECHAM4 data, the first 10 years of the Mk3 data deviate most from the 
observed dataset, while in the following 20 years the datasets are similar, with the average of 
the Mk3 rainfall only 2.5% higher than the observed data. 

CCAM 

The CCAM rainfall trend corresponds well with the observed data trend. At the end of the 30-
year period, the mean of the CCAM plot is 5% higher than the observed data. The plot of the 
observed data sits above the CCAM minimum plot and below the CCAM mean plot, 
indicating that the observed data lie within the lower range of the CCAM simulations  
(Fig. 5.1). 

HadAM3P 

The HadAM3P simulations show a drier trend than the observed current climate. At the end 
of the 30-year period, the final average value of all simulations was approximately 3% lower 
than that of the observed data. The observed data are within the upper range of the 
HadAM3P simulations (Fig. 5.1). 
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Figure 5.2  Differences between (1) the observed and the current downscaled rainfall from 
GCMs (coloured) and (2) current and future downscaled simulations (30-year 
simulation period) 

 
5.1.2 Cumulative rainfall — future 

The future climate scenarios were not all projected for the same time period (Table 3.1). The 
Mk3, CCAM and ECHAM4 rainfall data were projected for the period 2035–64, with 
HadAM3P for 2070–99. The projections developed from the Mk3 and the CCAM runs were 
very similar, with the ECHAM4 projection lower. Figure 5.3 shows cumulative plots of the 
mean, minimum and maximum of the simulations for the Mk3, CCAM and ECHAM4 models.  

The similarity between the Mk3 and the CCAM results is expected, as the CCAM is 
conditioned on the Mk3 far-field forcing. At the end of the 30-year future period, the mean 
cumulative rainfall for the Mk3 and CCAM was 25 400 mm and 24 900 mm respectively. This 
equates to a 0.4% difference. Both models have a similar range of simulations. In both cases 
the maximum is approximately 3% higher than the corresponding average, while the minima 
are 7% (CCAM) and 3% (Mk3) lower. The ECHAM4 result is lower in magnitude than the 
other two datasets. The mean rainfall plot at the end of the 30-year period is 4% lower than 
the CCAM mean.  
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Figure 5.3  Cumulative rainfall — future climate, Mk3, CCAM and ECHAM4 (2035–64) 

The cumulative rainfall total derived by the HadAM3P model (Fig. 5.4) in the later climate 
(2070–99) was lower than that predicted by the other GCMs for the 2035–64 period. This is 
an expected result, as the CO2 signature for this simulation period is higher, and would have 
implications in terms of rainfall and temperature changes. The mean of the 40 HadAM3P 
simulations was 18% lower than the CCAM mean. The range of the simulations is similar to 
that of the other GCM results. 

In all cases, the future climates had smaller cumulative rainfall totals than their corresponding 
current scenarios. The ECHAM4 dataset had the greatest difference, with a 24% reduction in 
rainfall. The CCAM and Mk3 results were similarly reduced: 14% and 12% respectively. A 
visual inspection of these differences can be seen in Figure 5.2 (white boxes), which show 
the 40 simulation average at the end of the 30-year period as well as the range of averages 
for each GCM. 
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Figure 5.4  Cumulative rainfall — future climate, HadAM3P simulations (2070–99) 

 

5.1.3 Annual and monthly rainfall 

Monthly rainfall was calculated for the current and future scenarios from downscaled data 
from each of the four GCMs (Figs 5.5, 5.6, 5.7 & 5.8). A description of the seasonal patterns 
for each dataset is given below. An analysis of monthly differences is given in Appendix B 
(Table B.1 & Fig. B.5). The annual rainfall differences for the current climate are summarised 
in Table 5.1. The current and future scenario results are compared, with the Mk3, CCAM and 
ECHAM4 future downscaled rainfall datasets corresponding to the years 2035–64 and the 
HadAM3P dataset corresponding to 2070–99 (Table 5.2). 

Mk3 

The mean annual downscaled rainfall for the current period was 5.1% higher than the 
observed data. There is a shift in the timing of the peak rainfall from June–July (observed) to 
July–August (Mk3) (Fig. 5.5). Due to the shift, rainfall totals are 25% less than observed for 
the April–June period and 29% higher than observed for the July–October period. This 
seasonal shift is due to temporal biases in the Mk3 mean sea level pressure (MSLP)-derived 
atmospheric predictors (Fig. 5.9a). The future dataset follows the same seasonal pattern as 
the current dataset, with peak rainfall in July–August. The mean annual rainfall decreases by 
12% (Table 5.2), with the majority of the reduction occurring from May to August. Rainfall in 
the future scenario during the drier months is also reduced, apart from February, when there 
is a slight increase. Due to the seasonal bias of this GCM, during the latter half of the year 
(August–October) future rainfall is higher than the observed rainfall. 
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Figure 5.5  Mk3 mean monthly rainfall 

 

Table 5.1  Difference between observed and current-simulated rainfall 

Annual average  
(mm) 

Difference compared to 
observed  

(%) 

Observed (1975–2004) 921  

Mk3 (1975–2004) 969 5 

CCAM (1975–2004) 966 5 

ECHAM4 (1975–2004) 1047 14 

HadAM3P (1960–1989) 897 –2.4 
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Table 5.2  Percentage change in rainfall from current to future scenarios 

 Mean annual rainfall 
(mm) 

Difference compared to 
current  

(%) 

2035–2064 projection   

ECHAM4     799 –23.8 

CCAM          835 –13.6 

Mk3               854 –11.9 

2070–2099 projection   

HadAM3P    685 –23.6 

CCAM  

The mean annual downscaled rainfall for the current climate is 1.5% higher than the 
observed data. The mean monthly rainfall matches observed data fairly well, although there 
is a slight bias (Figure 5.6). The bias is similar in its timing to that of the Mk3, although the 
difference is smaller. Thus, it appears that the CCAM corrects for some of the temporal bias 
seen in Mk3 MSLP. Mean annual rainfall for the future scenario is 14% less than for the 
current scenario, the majority of this reduction occurring from May to June. As with the Mk3, 
due to the seasonal bias some months in the future scenario (September and October) have 
higher rainfall than observed rainfall. During some summer months, the average rainfall in 
the future scenario is higher than in either the current or observed scenario for the month.   
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Figure 5.6  CCAM mean monthly rainfall 
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ECHAM4  

The ECHAM4 mean annual downscaled rainfall is 10% higher than the mean annual 
observed rainfall. Simulated rainfall during the high rainfall months of June–August is 37% 
higher than the observed data. LUCICAT-simulated rainfall for the remaining months is within 
14% of the observed data. The seasonality of the downscaled rainfall data is similar to that of 
the observed. Similarly to the Mk3, the inability of the ECHAM4 model to reproduce the 
observed MSLP seasonal cycle over the region (Fig. 5.9c) contributes to the periods of high 
rainfall. Mean annual rainfall modelled for the future scenario is 24% less than for the current 
climate. Mean monthly rainfall for the future scenario is less than that for the current scenario 
for all months, with the largest reductions in the May–August period. 
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Figure 5.7  ECHAM4 mean monthly rainfall 
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HadAM3P 

The mean annual rainfall downscaled from the HadAM3P model was 6% lower than the 
observed rainfall. The timing of peak rainfall shifts from mid June (observed) to early July 
(HadAM3P). Simulated rainfalls for April to June are on average 53% lower than the 
observed. Again, this seasonal bias can be partly explained by the errors associated with the 
GCM reproduction of the seasonal cycle of atmospheric predictors (Fig. 5.9). The mean 
annual rainfall for the future scenario is 24% less than for the current climate. The majority of 
this reduction occurs during the May–September period. In some of the drier months, rainfall 
in the future scenario is reduced (February, April and October) and in others increased 
(January, March, November and December).  
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Figure 5.8  HadAM3P mean monthly rainfall 

The seasonal bias seen in the downscaled rainfall data (Figs 5.5–5.8) can be partly 
explained by biases in the seasonality of the atmospheric predictors as reproduced by the 
GCMs. As the largest rainfall mismatch occurs during the winter months, the biases in one of 
the winter atmospheric predictors — mean sea level pressure (MSLP) — have been plotted 
for each GCM (Fig. 5.9). The bias is the difference between the GCM and observed 
anomaly. A positive bias should correspond to a lower value of downscaled rainfall and a 
negative bias to a higher value of downscaled rainfall data. Thus, MSLP biases can explain 
some, but not all, of the biases evident in the downscaled rainfall datasets.  
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Figure 5.9  Anomalies of winter MSLP for (a) Mk3 (b) CCAM (c) ECHAM4 and (d) HadAM3P 

The CCAM, Mk3 and ECHAM4 MSLP biases all have similar trends (positive bias in May, 
September and October; negative bias in June, July and August). For the Mk3, the positive 
bias in MSLP during May explains the lower downscaled rainfall and the negative biases in 
July and August explain the higher downscaled rainfalls for those months (Fig. 5.9a). For the 
CCAM, May MSLP has a positive bias, which corresponds with lower than observed 
downscaled rainfall, and the negative bias in August explains its higher simulated rainfall 
(Fig. 5.9b). Downscaled rainfalls for September and October are higher than observed, yet 
the MSLP biases for these months are positive.  

The MSLP bias for the ECHAM4 corresponds to the correct rainfall patterns (higher or lower 
than the observed data) for all months apart from September. For example, the negative 
MSLP biases in June and July explain the higher downscaled rainfalls for these months 
(Fig. 5.9c). The HadAM3P is similar in that the MSLP bias explains the rainfall discrepancies 
for all months apart from October. The MSLP biases for this GCM are different from the other 
GCMs in that the biases are smaller and do not follow the same seasonal pattern (Fig. 5.9d). 

The biases seen in downscaled rainfalls that do not appear related to MSLP biases may be 
due to other atmospheric predictors used in the models, such as the North–South MSLP 
gradient or the Dew Point Temperature Depression at 850 hPa, or to biases in another 
component of the modelling framework.  
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5.2 Streamflow 

Ten years of observed rainfall data were used before the 30-year period as a ‘warm-up run’ 
in order to stabilise the LUCICAT model. Due to the high rainfall simulated by the ECHAM4 
model, it was decided that this dataset would not be used. Forty simulations of 30 years of 
downscaled rainfall data for the CCAM, Mk3 and HadAM3P GCMs were used as input to 
model streamflow in LUCICAT. While running the model, no parameters were altered from 
when the model was run using observed data. The modelled streamflow at Serpentine 
Reservoir produced by using downscaled rainfall data was compared with two streamflow 
datasets — that evaluated by LUCICAT using observed records of rainfall (LUCICAT) and 
the water balance data (WBAL). Each current-scenario simulated dataset was also 
compared with its corresponding future-scenario dataset.  

 
5.2.1 Cumulative streamflow — current  

The range of streamflow projections encompasses both the LUCICAT and the water-balance 
(WBAL) datasets. The HadAM3P projected the lowest volumes of streamflow, and the Mk3 
the highest. At the end of the 30-year period, the average of the Mk3 streamflow simulations 
overestimates the LUCICAT data by 29% (Fig. 5.10). The average of the CCAM streamflows 
also overestimates LUCICAT but only by 14%. The average of the HadAM3P streamflows 
underestimates LUCICAT by 10%.  
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Figure 5.10  Cumulative runoff at Serpentine Dam — current climate 

 
5.2.2 Cumulative streamflow — future  

Cumulative runoff plots were also constructed for the Mk3, CCAM and HadAM3P future 
scenarios. The Mk3 and CCAM simulations both modelled the 2035–64 period (Fig. 5.11) 
and have similar results during the first 18 years. The upper range of the CCAM simulations 
corresponds well with the mean of the Mk3 simulations, and the minimum plot of the Mk3 
corresponds well with the mean plot of the CCAM curve (Fig. 5.11). After that, the Mk3 
simulations deviate further from those of CCAM. At the end of the 30-year period, the 
average of the Mk3 projection (1377 mm) is 25% higher than for CCAM (1039 mm). The 
HadAM3P simulations, modelled for a later time period (2070–99), record the smallest runoff 
accumulation (Fig. 5.12). At the end of 30 years, the average of cumulative runoffs is 
calculated to be 478 mm, which equates to being 54% lower than the CCAM end result and 
65% less than the Mk3 end result. Compared to the current-scenario simulations, the 
HadAM3P future scenario accumulates 71% less runoff. 
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Figure 5.11  Cumulative runoff — future climate, CCAM and Mk3 simulations 
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Figure 5.12  Cumulative runoff — future climate, HadAM3P simulation 
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5.2.3 Monthly streamflow 

Mean monthly streamflows were evaluated for the current and future scenarios 
corresponding to the Mk3, CCAM and HadAM3P GCMs. Each current-scenario dataset was 
compared with the LUCICAT simulation of observed records, and each future scenario 
dataset was compared with its corresponding current scenario. The summary of annual 
differences is given in Table 5.3 with statistics relating to the monthly runoff in Appendix D. 
The Mk3 and CCAM results for the current-climate scenario are both higher than the 
observed records, while the HadAM3P figures are lower. 

The CCAM simulations for the current scenario are close to the observed data, with an 
annual average overestimation of 14% (Fig. 5.13). Outputs for June and July are lower than 
the observed; though, the observed values for both months are within the range of data for 
the current scenario. Figures for August to December are higher than the observed data. The 
mean monthly runoffs for the future scenario are lower than for the current scenario in all 
months apart from March, where they are the same. On an annual scale, runoff reduces by 
44%. The current and future scenario data have similar seasonal biases so, in some months 
(October and December) the mean runoff for the future scenario is greater than for the 
observed data.  
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Figure 5.13  CCAM mean monthly runoff 

On an annual scale, the Mk3 current-scenario simulations are 29% higher than the observed 
data — largely due to mean monthly runoffs for August and September being 7.4 mm and 
9.3 mm higher than the observed data (Fig. 5.14). The estimations for the other wet months 
are better: within 3 mm. The dry months (November–May) are simulated well: within 1 mm. 
The seasonal bias in the Mk3 data when comparing the current-scenario to the observed 
dataset is greater than in CCAM and results in larger discrepancies in monthly runoff. The 
mean monthly runoffs of the future scenario are lower than for the current scenario in all 
months apart from February where they are the same. 
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Figure 5.14  Mk3 mean monthly runoff 

 

The Mk3 mean annual runoff in the future scenario is 29% less than in the current. As with 
the CCAM data, the current and future scenario data share similar seasonal biases and, as a 
result, in some months (September, October and December) the mean runoffs for the future 
scenario are greater than for the observed data.  

Unlike CCAM and Mk3, HadAM3P streamflows are less than LUCICAT flows. On an annual 
scale, they are 10% lower, mainly due to low streamflows during July (Fig. 5.15). The error 
bars indicate, however, that the LUCICAT data are within the range of the simulated July 
streamflows. Future mean monthly runoffs are lower than current scenario runoffs in all 
months except January, where future runoff is higher. At the annual scale, the future 
scenario produced 69% less runoff than the current scenario. This is a larger reduction than 
for the other two GCMs but expected as the projection period is later: 2070–99. Runoffs 
decrease most in July, August and September: by 8, 14 and 7 mm respectively. The largest 
percentage reductions occur in May, June and October (73, 82 and 72% respectively).  
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Figure 5.15  HadAM3P mean monthly runoff 

 

Table 5.3  Percentage changes in annual streamflow, observed to current climate and current 
to future climate 

Current climate Average  

(mm/yr) 

Average  

(GL/yr) 

Difference compared to observed  

(%) 

Observed (LUCICAT 1975-2004) 54.9 36.4  

CCAM (1975–2004) 62.5 41.5 13.8 

HadAM3P (1960–1989) 49.6 32.9 –9.6 

Mk3 (1975–2004) 70.9 47.1 29.1 

Future climate Average 

(mm/yr) 

Average 

(GL/yr) 

Difference compared to current 

(%) 

CCAM (2035–2064) 35.2 23.4 –43.7 

HadAM3P (2070–2099) 15.5 10.3 –68.7 

Mk3 (2035–2064) 50.4 33.5 –29 

 

5.3 Water-balance components 

Water-balance components were calculated for the current and future scenarios of the 
CCAM, Mk3 and HadAM3P simulations for a 30-year period and compared with observed 
data from the LUCICAT model (Table 5.4; Figs 5.16 & 5.17) For all GCM runs, interflow is 
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the most significant flow component, while baseflow contributes the least to the total 
streamflow. Interflow changes most between the present to the future scenarios, decreasing 
by 43%, 37% and 72% for the CCAM, Mk3 and HadAM3P simulations respectively. In the 
Stage 1 study, for the Stirling Dam catchment, during future scenario, baseflow (19% of total 
streamflow), changed most. In this Stage 2 study, the baseflow component is only 2% (see 
Table 5.4) of total flow, so a reduction in a future climate is not as noticeable.  

Table 5.4  Annual mean water-balance components for observed data, current and future 
CCAM, Mk3 and HadAM3P scenarios 

Water balance component Observed  

(1975–2004) 

(mm) 

Current climate 

CCAM 

(mm) 

Future climate  

CCAM 

 (mm) 

Rainfall – total 921 964 864 

Interception 121 127 118 

Soil evaporation 17 18 16 

Transpiration 721 751 704 

Streamflow — total* 61.0 62.4 35.8 

— Surface runoff 13.4 13.9 8.9 

— Interflow 48.2 49.3 28.2 

— Baseflow 2.0 2.3 1.3 

Storage change  –2 2 –13 

 

Water balance 

component 

Current climate Mk3 

 

(mm) 

Future climate  

Mk3 

(mm) 

Current climate 

HadAM3P 

(mm) 

Future climate 

HadAM3P 

(mm) 

Rainfall —  total 965 854 896 682 

Interception 131 119 125 105 

Soil evaporation 18 16 16 13 

Transpiration 734 688 701 593 

Streamflow — total* 74.5 47.5 56.9 16.5 

— Surface runoff 15.4 10.7 11.8 4.8 

— Interflow 59.8 37.7 46.1 12.9 

— Baseflow 2.3 1.6 1.7 0.6 

Storage change  5 –19 –6 –47 

*Total streamflow is less than the sum of the individual streamflow components due to transmission and 

evaporation losses. 

For the future climate scenarios, all streamflow components reduce. (Fig. 5.17). As shown in 
Figure 5.16a, there was significant variation between simulations for the current-climate 
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interflow components. The interflow components averaged over the 30-year period were 
33 GL. This variation was not as prominent in the simulations for the future scenario.  

With the Mk3 simulations, the percentage reductions were less than those of the CCAM 
(Fig.  5.16b). Baseflow and surface runoff components were both lower by 30%. The flow 
components from the HadAM3P simulations are the lowest mainly due to lower rainfalls in 
the future climate during 2070-99 (Fig. 5.16c).  
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Figure 5.16  LUCICAT streamflow components at Serpentine Dam: observed, current and future 
simulations for (a) CCAM, (b) Mk3 and (c) HadAM3P 

 

0

20

40

60

Baseflow Interflow Surface runoff

St
re

am
flo

w
 (G

L
)

LUCICAT - Observed
Mk3 current
Mk3 future

0

20

40

60

Baseflow Interflow Surface runoff

St
re

am
flo

w
 (G

L
)

LUCICAT - Observed
CCAM current
CCAM future

(a) (b) 

(c) 



Projected impacts of climate change WRT 36    Water Resource Technical Series  

 

 

 

44  Department of Water 

 

0

30

60

90

Baseflow Interflow Surface runoff
Flow component

D
ec

re
as

e 
cu

rr
en

t t
o 

fu
tu

re
 (%

) CCAM
Mk3
HadAM3P

 
 

Figure 5.17  Percentage decreases in flow components for the CCAM, Mk3 and HadAM3P 
LUCICAT models  
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6 Discussion 

This study is not aimed at calculating the exact future declines in rainfall, streamflow or 
catchment yield into the Serpentine Dam catchment, but in estimating the extent of the likely 
declines. As climate modelling is a relatively new science, uncertainty exists in its application, 
and only projections — not predictions — can be given. Climate models will only ever provide 
projections, as the actual trajectory of greenhouse-gas emissions scenarios will remain 
uncertain regardless of improvements in climate models.  
 

6.1 GCM results relating to the Serpentine Dam 

catchment 

Not all downscaled rainfall datasets were appropriate for use in this study. The current-
scenario downscaled rainfall derived from the ECHAM4 GCM was significantly higher than 
the data generated by the three other models and the observed data, and was therefore not 
used in the streamflow analysis. The other downscaled rainfall datasets were deemed 
appropriate for use in modelling streamflow and catchment yield into the Serpentine Dam. 
Both current and future scenarios were modelled for each of the three GCMs. The HadAM3P 
data are closest to the observed data. Using CCAM increased the resolution of the Mk3 
GCM and produced results that related more closely to the observed data than the Mk3. In 
all future scenarios streamflows, and consequently catchment yields, decline.  

 
6.1.1 Rainfall — applicability of the ECHAM4 model 

Mean monthly rainfall was calculated for each of the current-scenario downscaled rainfall 
datasets. The ECHAM4 rainfalls are significantly higher than those produced by the other 
models and the observed data. One possible reason for this is the larger grid spacing of the 
GCM causing a coarser reproduction of the atmospheric predictors. On analysing the 
downscaled rainfall, the increase was mainly due to a 10-year period of high rainfall. This 
indicates that the ECHAM4 model captures a higher variability of rainfall, and may be less 
applicable for this part of Western Australia. Its atmospheric data may still be valid, as the 
current climate does not relate to a specific time period. However, in this study, downscaled 
rainfall datasets from different GCMs were compared to a specific 30-year period of 
observed rainfall. Since the ECHAM4 data did not correspond as well as the other 
downscaled rainfall datasets, they were not included in the streamflow modelling. 
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6.1.2 Rainfall — CCAM improvement on the Mk3 

There was a noticeable improvement in the current-climate dataset from the Mk3 run to the 
CCAM run. The CCAM data shows a weaker seasonal bias in the timing of the peak rainfall 
than the Mk3 run (Fig. 6.1). So, the mean monthly rainfalls are closer to the observed values. 
This improvement can be partly explained by the accuracy of the atmospheric predictors 
(Fig. 5.9). The GCMs aim to reproduce the monthly anomaly of the observed atmospheric 
predictors. Figure 5.9 shows the anomaly bias (GCM anomaly – observed anomaly) of all 
GCMs. A bias of zero indicates a very good match. The CCAM model has a narrower range 
of biases than the Mk3, which indicates that the model is more accurately reproducing the 
predictors. As the CCAM code is continually undergoing improvement and refinement, it is 
reasonable to expect future versions to perform even better. Although the seasonality of the 
monthly rainfall has changed, the mean annual rainfall for both datasets is very similar at 
967 mm for CCAM and 969 mm for Mk3 (Table 5.1). 
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Figure 6.1  Mean monthly rainfall at Serpentine Dam: observed data, CCAM and Mk3 
simulations 

The two models computed similar annual rainfall averages for the 30-year period, but quite 
diverse streamflow values. A better match can be seen in the CCAM data when comparing 
the modelled streamflow for both datasets. This variation between the CCAM and Mk3 
simulations can be attributed to the seasonal bias of the Mk3 rainfall data, which show higher 
rainfall from July to August (Fig. 6.2) This pattern was also observed in streamflow data. The 
Mk3 mean annual streamflow was 29% higher than the observed data, whereas the CCAM 
figure was only 14% higher (Fig. 6.2). This supports the idea that the seasonality of rainfall 
has a large influence on streamflow and catchment yield.  
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Figure 6.2  Mean monthly runoff at Serpentine Dam: observed data, CCAM and Mk3 simulations 

 
6.1.3 Rainfall and streamflow reduction 

The results from Stages 1 and 2 of this study indicate that the reduction in streamflow is 
approximately three times the reduction in rainfall for the A2 emissions scenario (Table 6.1).  

This relationship is consistent with results of similar studies. Chiew and McMahon (2002) 
modelled rainfall and runoff for the present (1990) and future climates (2030) in catchments 
around Australia. For results with future rainfall and runoff declines, the runoff decline is 2.8 
times rainfall decline. A similar study on the Salmon catchment in south-west Western 
Australia (Viney & Sivapalan 1996) found a 10% reduction in rainfall leads to approximately 
30% decline in streamflow. Rainfall and runoff were modelled for six catchments around 
Australia for 2035 and 2085 using the CSIRO Mk2 GCM and the SIMHYD rainfall/runoff 
model (Harrold et al. 2005). Of the catchments with reductions in rainfall and streamflow, the 
average ratio of streamflow to rainfall reduction is 2.15. 

Table 6.1  Rainfall and runoff decline for the future climate 

Catchment GCM & catchment model Rainfall decline 

(%) 

Runoff decline 

(%) 

Ratio 

Stirling Mk3/LUCICAT 11 31 2.82 

Serpentine Mk3/LUCICAT 12 29 2.42 

Serpentine CCAM/LUCICAT 14 44 3.14 

Serpentine HadAM3P/LUCICAT 24 69 2.88 

Average 2.80 
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6.1.4 Modelled changes in climate patterns 

All future scenarios project a decline in rainfall. Average annual rainfall for the 30-year period 
for the CCAM and Mk3 datasets declines by 14% and 12% respectively and by 24% for the 
ECHAM4 and HadAM3P datasets. The larger declines can be explained by the initially 
higher rainfall average for the ECHAM4 data (i.e. higher variability), and by a later modelling 
period for HadAM3P.  

The currently high rainfall months (April–October) have lower rainfall in all future rainfall 
datasets. In the other, drier months some future datasets have a slight increase in rainfall 
(Table 6.2). In some cases, the timing of future peak flows also shifts: This is particularly so 
for the CCAM-generated data where peak rainfall shifts from June–July to July–August 
(Fig. 5.6). Peak rainfalls for the Mk3 and ECHAM4 also shift though not as markedly (Figs 5.5 
& 5.7).  
 

Table 6.2  Mean monthly downscaled and observed rainfall (mm) 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed 17 22 21 49 117 165 176 145 100 54 40 15 

ECHAM4 current 20 21 34 60 117 199 221 166 105 44 35 25 

ECHAM4 future 16 13 24 52 79 158 173 134 82 21 29 18 

CCAM current 25 24 31 47 93 163 173 152 121 72 39 27 

CCAM future 24 27 33 35 62 127 150 142 112 58 39 26 

Mk3 current 19 15 28 34 92 153 185 185 138 71 26 22 

Mk3 future 15 16 18 25 69 132 166 171 127 69 26 20 

HadAM3P current 27 29 24 27 106 153 171 162 100 42 27 29 

HadAM3P future 33 26 26 27 71 104 129 109 68 30 28 34 

The seasonal shifts in rainfall are very influential in the modelled streamflow outputs. The 
mean annual streamflows into the Serpentine Dam in the current-scenario are 47.1 GL (Mk3) 
and 41.5 GL (CCAM). The streamflows are fairly similar, unlike the very different streamflows 
in the future-scenario. The Mk3 mean annual streamflow into the reservoir drops 29% to 
33.5 GL while CCAM streamflow drops 44% to 23.4 GL (Table 5.3). This is a large difference 
in streamflow reduction, considering that the annual downscaled rainfall decreases are 
similar, at 12% and 14% for the Mk3 and CCAM respectively. The large difference in future 
streamflow decline can be attributed to the differences in seasonality of the future-climate 
rainfall.  
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Flow frequency 

The flow duration of the CCAM current and future scenarios were compared in a flow 
duration curve developed using the median simulation from the current climate (simulation 
31) and that from the future climate (simulation 30) (Fig. 6.3).  

The future simulation indicates that runoffs at all magnitudes will decrease, with the greatest 
effects being seen at high-flow periods. For months with high runoff (10–100 mm/month) the 
CCAM current data revealed a probability of exceedence between 0 and 20%. For the same 
probability, the CCAM future data showed a decrease in monthly runoff (6 mm of the current 
17 mm at 10% probability of exceedence), indicating a decrease in the frequency of high 
flows — with adverse effects on catchment yield. This finding is supported by the modelling 
results, which revealed a 44% reduction in mean annual catchment yield.  

The reduction at low runoff periods is also significant in terms of catchment water processes 
(0.2 mm out of the current 0.4 mm at 60% probability of exceedence), putting further stress 
on the environment.  

 

Figure 6.3  Flow duration curves 

 

6.2 Modelling uncertainty 

A level of uncertainty is inherent in climate modelling. Different GCMs modelling the same 
scenario often produce different outcomes; as in this study, where four climate models driven 
by the A2 emission scenario and downscaled for the Serpentine Dam catchment, produced 
different rainfall results. The variation in results can be attributed to the mechanics of the 
climate models, including the use of climate predictors. Wilby (2005) notes that different 
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climate models produced widely differing projections at the regional scale when used to drive 
a statistical downscaling model for estimating daily flows of the River Thames in the UK. 
Uncertainty also exists in deciding which climate scenario is to be modelled. Future 
greenhouse-gas emissions are only projections of possible situations, and different outcomes 
will result from using different projections. Uncertainty also exists in hydrological modelling. 
Historical data are essential in such studies, yet complete records are not always available. 
Other data used in hydrologic modelling also have associated uncertainties, particularly 
evapotranspiration and its role in water-balance models associated with a warmer climate.  

 

6.2.1 Hydrologic modelling 

In this study, uncertainty exists in each model step. The model’s structure is an approximate 
representation of the real hydrologic processes, and many parameters used by the model 
have been derived from data with various degrees of uncertainty. An example is the 
computation of the spatial distribution of rainfall in the Serpentine Dam catchment from 
records of rainfall stations across the catchment. The stations are unevenly distributed, so 
certain areas are unequally represented. In addition, there are data gaps in the 30 years at 
the rainfall stations. If records from a low-rainfall station stop, the distribution of rainfall from 
this time can become biased. In addition, topography influences local-scale rainfall and, with 
large elevation variations within the catchment, the rainfall stations would not capture all 
local-scale variations. 

Modelled data are calibrated against observed data — in this case, streamflow at various 
gauging stations throughout the Serpentine catchment. Parameters are altered so that the 
modelled data correspond as well as possible with the observed data. A common problem in 
hydrologic modelling is that of equifinality. This occurs when several parameter sets are 
considered ‘equivalent’ (Hreiche et al. 2002). For example, overestimating one parameter 
and underestimating another can give the appearance of an accurate result (Frederick & 
Major 1997). This type of uncertainty has been reported as being of a magnitude similar to 
that of the emission scenario choice up to about 2030 (Wilby 2005). 

 
6.2.2 Projections 

The extent of greenhouse-gas emissions to be experienced in the future will always be 
uncertain. A method of characterising this uncertainty is to use a number of different 
emission scenarios to project a range of possible outcomes. This study has used the A2 
scenario, which is at the high end of the projections. As only one emission scenario has been 
studied, the results represent only one possible outcome. Projected changes in regional 
circulation and hence rainfall using this scenario may be larger than changes from scenarios 
with less greenhouse forcing. For example, the projected carbon dioxide emission for the B2 
scenario is 915 ppmv by 2100, whereas on the A2 scenario it is 44% higher, at 1320 ppmv. 
Thus the results of this study could be viewed as being at the high end of runoff response to 
climate change.  
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6.2.3 Atmospheric predictors 

There is a recurring, pervasive problem of climate models incorrectly modelling the annual 
cycle of key predictors. This caused the resultant mismatch between the seasonality of the 
observed data used to fit LUCICAT and that generated by downscaling GCMs. This seriously 
limits confidence in projected catchment yield response. The results presented here suggest 
that model resolution is a factor related to the ability of a climate model to reproduce the 
annual cycle of atmospheric predictors required for statistical downscaling. Notably, the 
ECHAM model, with the coarsest grid resolution, produced the poorest reproduction of the 
annual cycle of key predictors, and HadAM3P, with finer spatial resolution, better reproduced 
the annual cycle (Fig. 5.9). CCAM improved on the Mk3 reproduction of the annual cycle, 
showing the benefit of dynamic downscaling as a precursor to statistical downscaling.  
 

6.2.4 Evapotranspiration 

Pan evaporation is a measure of potential evapotranspiration, or atmospheric demand (Land 
and Water Australia 2004). It is a topical subject, with opinions differing in the direction of 
historical pan-evaporation trends (increasing or decreasing) and the reasons for this trend.  

There is some indication that greenhouse-induced climate change will lead to increased 
evaporative demand and actual evaporation. Higher concentrations of carbon dioxide in the 
atmosphere may lead to changes in forest density and structure, and may result in greater 
evapotranspiration. Against this is the lack of evidence of long-term, large-scale increases in 
pan evaporation. This may be due to the dependence of pan evaporation on other climatic 
variables including solar radiation, wind speed and vapour-pressure deficit, none of which 
have changed in a way to promote an increase in pan evaporation (Gifford et al. 2005). 
Strengthening this argument is evidence that, from the 1960s to the 1990s globally, there has 
been a decreasing trend in pan evaporation. One potential reason for this is a reduction in 
solar radiation reaching the Earth’s surface, due to global dimming, that occurred during the 
same time period in the Northern Hemisphere (Gifford et al. 2005).  

The annual pan evaporation rate has decreased 2.8 mm/yr for the last 30 years. Likewise, 
annual lake evaporation has decreased by 2.9 mm/yr (Gifford et al. 2005; Roderick & 
Farquhar 2004). The effects of lower pan and lake evaporation rates on actual 
evapotranspiration depend upon how ‘wet’ or ‘dry’ a particular area is. In a ‘wet’ area (annual 
rainfall greater than pan evaporation), reduced pan evaporation may mean reduced actual 
evaporation and so increased streamflow. Observations from the Northern Hemisphere 
(Russia and other parts of Europe) support this hypothesis. In a ‘dry’ area (like south-west 
Western Australia), if annual rainfall does not change, reduced pan evaporation may lead to 
increased plant growth due to a reduction in moisture deficit. The effects of reduced pan 
evaporation and reduced annual rainfall on soil moisture deficit, plant growth and streamflow 
are still unclear. 
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There are numerous areas of uncertainty in using pan evaporation for climate modelling. 
Firstly, there is a significant difference between actual and potential evapotranspiration. 
During drought conditions, the atmospheric demand is high, causing a high potential 
evapotranspiration but, from a lack of soil moisture, a low actual evapotranspiration (Land 
and Water Australia 2004). Long-term records are also difficult to obtain. Standard 
measuring devices were only installed in the 1960s, so analysing trends using data recorded 
before this time can bias the results. Urbanisation also has a role in affecting pan 
evaporation, influencing wind speeds through obstructions. 

Pan evaporation has been calculated from first principles in a recent CCAM simulation 
downscaling NCEP reanalysis from 1951–2000. In these 60 km simulations, at every grid 
point a pan water temperature is updated each time step, based on the latent and sensible 
heat fluxes from the pan water surface, and also including sensible heat fluxes from the 
bottom and sides of the pan. In this simulation, the modelled pan evaporation trends from 
1975–2000 were found to be generally consistent with the observed trends over most of 
Australia (J McGregor, pers. comm. 2007). 
 

6.2.5 Other factors 

Other atmospheric factors are not always incorporated into climate modelling. These include 
the incorporation of ocean evaporation and its response to climate change. Cloud cover is 
another factor with uncertain influences on climate change, as many GCMs are not able to 
properly model the physics of clouds (Franks 2002). As a result, the effects of cloud cover on 
radiation and the influence of greenhouse gases on cloud formation and cloud properties are 
uncertain (Gifford et al. 2005).  
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7 Conclusion 
The current-climate downscaled rainfall datasets from the four GCMs were compared with 
observed rainfall. Mean annual rainfalls from three GCMs (HadAM3P, CCAM and Mk3) were 
within ±5% of the observed mean annual rainfall (1975–2003) of 921 mm, while those from 
ECHAM4 rainfall was higher. As a result, only rainfall data from the first three GCMs were 
used in the streamflow analysis. The Mk3 and the CCAM current-climate downscaled 
rainfalls have seasonal biases at the monthly scale. The CCAM bias is not as strong as the 
Mk3, yet still models lower rainfall in the early months and higher rainfall later in the year. 

All GCMs model a future climate with a reduction in rainfall from 12% to 24%. The projected 
declines are12% and 14% by mid-century for the two Australian climate models (CCAM and 
Mk3). The projected 24% decline by mid-century for ECHAM4, approximately twice the 
reduction of CCAM and Mk3, can be attributed to the initially higher current-climate rainfall. 
The HadAM3P also projects a 24% reduction, explained by referring to a later climate (2070–
99). For all models, the majority of the decline occurs during the wet months and the drier 
months remain fairly constant.  

Downscaled GCM rainfall was used as data input into the LUCICAT model. Before doing so, 
the model was calibrated for the Serpentine Dam catchment using measured rainfall, 
streamflow and catchment characteristics data. The LUCICAT model was calibrated on the 
annual, monthly and daily time scales and mirrors the historical streamflow trends very well. 
Flow magnitudes are also predicted well, with generally better results in the larger gauged 
areas. Daily calibrations are at times higher than the observed data and also give some 
earlier cease-to-flow results. Calibration reveals that mean annual flow (1975–2003) into the 
Serpentine Dam is 36.5 GL. 

The correlation between the observed and the current-climate catchment yields is optimal 
with the CCAM simulations, the CCAM annual flow of 41.5 GL corresponding to a 14% 
overestimation. The seasonal bias of the Mk3 rainfall has a large impact on the annual flow 
result. Annual rainfall for the Mk3 and the CCAM simulations varies by 2%; however, the 
seasonality of the rainfall carries through into the streamflow results. As a result, the Mk3 
simulations overestimate calibrated annual streamflow by 29%. The HadAM3P simulations 
show streamflow 10% lower than the calibrated mean annual flow. Streamflow components 
are best modelled by the CCAM simulations, which also have the largest simulation range.  

In the future climate, mean annual streamflow is projected to decrease more than rainfall — 
this is typical of the relationship between rainfall and streamflow. By mid-century (2035–64), 
the annual average streamflows projected by the Australian models (Mk3 and CCAM) would 
decrease to 33.5 GL and 23.4 GL or by 29% and 44% respectively. By late century (2070–
99), the HadAM3P simulations produced a 69% reduction in annual flow to 10.3 GL.  

This study has focused on the mean annual variations in rainfall and streamflow over a 30-
year period. Reporting at this time scale can mask the within-year variations. When analysing 
the downscaled rainfall datasets, accurate simulations at the annual scale masked, for some 
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models, the seasonal biases that influence both monthly and annual variations of modelled 
streamflow. 

With the completion of this study it has become apparent that not all GCMs are suitable for 
use in the south-west of Western Australia. It is clear that there are many sources of 
uncertainty involved with climate/hydrology modelling, which can be undefinable, ambiguous 
or unavoidable. The A2 emission scenario used assumes constant high-emission rates, so 
results are taking into account a possible ‘worst-case’ scenario. If future emission rates are 
lower than envisaged in the A2 scenario, climate patterns could be different, with possibly 
less reduction in rainfall and streamflow.  

The study assumed no catchment land-use changes in the next 100 years (though changes 
due to prescribed burning, mining and land development are possibilities) and kept pan 
evaporation and plant transpiration efficiency unchanged in the future climate.  

Additional studies can be carried out to reduce the uncertainties. Similar climate 
change/hydrology studies that use more than one emission scenario will provide a broader 
range of results to analyse and take into account the range of possible future climates given 
the current state of knowledge. Further studies should also consider combining available 
catchment yield results with investigations into water demand. Further research is currently 
under way in relation to the direction of pan evaporation. Once relationships are established 
between evaporation and other climatic variables, uncertainty in the parameterisation of 
hydrologic/climate models will be reduced. Performing similar studies in different areas of 
Western Australia will allow additional comparisons and further refinement of sources of 
error.  

The use of four climate models generated a broad spectrum of results. Each model re-
created the current-climate rainfall to varying levels of success, while the GCM with the 
coarsest spatial resolution (ECHAM4) deviated the most from the observed dataset. The use 
of a Regional Catchment Model produced more accurate results, as shown in comparing the 
CCAM results with those of the Mk3.  

The results are projections of possible scenarios, which will change depending on the 
emission scenario and future land use as well as the response of rainfall and actual 
evaporation to future climate conditions. 
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Appendix A: Application of the LUCICAT 
model  

A.1 LUCICAT model 

 

The Land Use Change Incorporated CATchment (LUCICAT) model (Bari 2005; Bari et al. 
2005; Bari & Smettem 2006a & b; Bari et al. 2007; Smith et al. 2007; Dixon & Bari, 2008) 
was used to simulate streamflow throughout the Serpentine Dam catchment. LUCICAT uses 
a daily water-balance model to represent the streamflow processes that occur within the 
catchment. The model consists of five main stores: dry, wet and subsurface stores, saturated 
groundwater store and transient stream zone store (Fig. A.1).   
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Figure A.1  LUCICAT model 

The catchment being modelled is divided into smaller subcatchments, with each represented 
as an ‘open book’ catchment. The dry, wet and subsurface stores model vertical and lateral 
water flows and also describe the soil-moisture balance. The Groundwater Store controls 
baseflow to the stream and the contribution of groundwater to the streamzone. The transient 
streamzone represents parts of the catchment that have become saturated due to the 
influence of groundwater.  
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A.2 Data preparation and model set-up  

The Serpentine Dam catchment was divided into 86 subcatchments, ranging in area from  
2–16 km2 (Fig. A.2). This scale of separation enables the application of spatially varied 
catchment characteristics, including attributes such as rainfall, pan evaporation, soil type and 
vegetation. To run LUCICAT, daily rainfall, daily pan evaporation, subcatchment attributes, 
groundwater data and land-use history for each subcatchment were required. Sub-
catchments with gauging stations at the outlet also required daily flow data to be used for 
calibration.   

 

Figure A.2  Stream nodes and subcatchments of the Serpentine Dam catchment 

Rainfall distribution 

A total of 37 rainfall stations were used to create a spatial distribution of daily rainfall across 
the catchment (Fig. 2.2) using data collected between 1960 and 2004. The periods of record 
of the rainfall stations varied and only five stations had complete records from the 1970s to 
2004. Based on the method described by Dean and Snyder (1977), for each day of the 
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simulation, a daily rainfall dataset was generated for each subcatchment using records from 
the three closest stations, or, to fill data gaps, using records from the closest rainfall station 
with data.  

The average annual rainfall for the catchment over the period 1975–2004 ranged from 650 to 
1150 mm, increasing from east to west (Fig. A.3).   

Figure A.3  Spatial distribution of average annual rainfall (1975–2004) 

Mean monthly rainfall varied significantly across the catchment (Fig. A.4). The mean monthly 
rainfall for January at the dam outlet (Catchment 86) was 17 mm. The variation within the 
month was high — largely due to the high monthly rainfall totals of 32 and 120 mm 
respectively in 1990 and 2000. November to March also had low mean monthly rainfalls, with 
less variation than January. December had the smallest variation in mean monthly rainfalls of 
the three sites shown in Figure A.4. 

At all sites mean monthly rainfall and the variation in monthly rainfall increased during the 
winter months (June–August). There was a significant increase in rainfall closer to the 
catchment outlet during the wetter months (May–September), with a less pronounced pattern 
during the drier months. 
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Figure A.4  Mean monthly rainfall 1975–2003 

Pan evaporation 

While pan evaporation is not recorded within the catchment, daily observed data are 
available at some rainfall stations west of the Serpentine Dam. Mean annual pan evaporation 
data at the centroid of all subcatchments were calculated from Luke et al. (1988) and then 
the figures converted into daily data using a harmonic function. The annual pan evaporation 
across the catchment ranged from 1600 to 1710 mm. The number of rainfall days was also a 
factor in determining daily rainfall, explaining some of the spikes in the data. The maximum 
daily evaporation throughout the catchment ranged from 8.3 to 8.9 mm, usually during the 
December–January period, and the minimum daily evaporation ranged from 0.5 to 2 mm, 
generally in the June–July period. Daily modelled pan-evaporation data from the Serpentine 
meteorological station (009039) compared well with the pan-evaporation data at Catchment 
86 derived using the above methodology (Fig. A.5).   
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Figure A.5  Daily pan evaporation from daily modelled data (009039) and derived from annual 
data 

Observed streamflow 

Six gauging stations, with catchment areas between 2.1 and 243 km2, were used to calibrate 
the modelled flows (Table 2.1). The Big Brook and River Road stations are located along the 
main tributaries, while the Cameron Central and Cameron West gauges are within smaller 
experimental catchments. The longest complete period of record (1983 to 2004) is from the 
Big Brook gauging station, followed by the Jack Rocks and River Road gauging stations, 
whose records cover 1981–99 and 1982–99 respectively. The Jayrup gauging station has a 
good record (1995–2003), as does the Cameron Central gauging station (1992–2003) — 
apart from a period of approximately one month when the quality of the data was recorded as 
poor. This period of poor records was dry and therefore does not bias any modelling results. 

Land-use history 

During the calibration of the LUCICAT model, full forest cover was assumed, with LANDSAT 
imagery used to calculate the leaf area index (LAI) of forest cover. The LAI values were used 
as a data input to the LUCICAT model as part of vegetation/water-balance calculations. The 
relatively small proportion of the catchment used for mining throughout the simulated period 
was not incorporated into the modelling.  

LAI values were developed using the Microstation and Geographic Information Computation 
(MAGIC) model (Mauger 1996). This involved creating a grid about the catchment and 
dividing it into 25-m x 25-m cells. To separate forest cover from bare ground and water, the 
hues of each cell were used to characterise these land types. LAI values were determined for 
the years 1988, 1990, 1992, 1994, 1996, 1997, 1999, 2000, 2002 and 2003. The average 
LAI value within each subcatchment was determined and incorporated into the input file. For 
the years before 1988, the 1988 LAI values were used. For the years for which an LAI value 
was not available, the model interpolated a value. An annual plot of LAI values within 
selected subcatchments for the 1988–2003 period is shown in Figure A.6.  
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Figure A.6  LAI at three selected subcatchments 

 

Groundwater  

In the high-rainfall zone of south-west Western Australia, groundwater is commonly well 
connected to the stream channel. In the low-rainfall zone, however, groundwater can be 15–
20 m below the stream channel. Not much groundwater data is available for the Serpentine 
Dam catchment, though some is available for the Cameron subcatchments. The limited 
recordings of groundwater levels at one site (61440352, subcatchment 69) show that the 
water level was close to the surface during October 1990 and June1991.  

Subcatchment attributes 

LUCICAT requires a variety of subcatchment attributes such as subcatchment elevations and 
areas; stream depth, width and length; surface slope; and soil thickness. This information 
has been extracted from the Department of Water’s Geographic Information System. 

A.3 Calibration 

LUCICAT was manually calibrated for the annual, monthly and daily time scales, and 
simulations matched the observed data very well for all of them. The variations of some 
calibration parameters are shown in Table A.1. The value ranges are the results of 
calibrating LUCICAT to a wide range of catchments. 
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Table A.1  Parameters and their range 

Parameter Description Unit Value 

d Topsoil thickness mm 1900–2900 

wi Infiltration threshold  0.0001–0.0091 

Kll Saturated hydraulic conductivity mm/day 350 

Kuv Vertical conductivity  mm/day 27 

 

Annual streamflow calibration 

Annual runoff was calibrated at stream gauges throughout the catchment (Figs A.7 & 4.2). 
The correlations of the modelled and the observed streamflows for the six gauging stations 
are shown in Figure A.8. The annual averages are compared in Figure 4.3. For the Jack 
Rocks gauging station the observed and modelled data followed similar trends (Fig. A.7a). 
Both datasets record a high-runoff year in 1981 (Obs: 147 mm, LUCICAT: 178 mm) followed 
by a lower runoff year in 1982 (44 mm and 58 mm) and another high-runoff year in 1983 
(163 mm and 214 mm). In all cases, LUCICAT runoff tends to be higher than observed 
runoff. A period of low runoff (60–100 mm) is recorded by both datasets from 1984 to 1987, 
after which records of annual runoff vary between 47 and 170 mm. LUCICAT simulated lower 
runoffs during the 1992–94 period and higher runoffs for 1996–98. The relationship between 
observed and modelled runoff (Fig. A.8a) records an R2 value of 0.84. The statistics in 
Table 4.1 suggest that, during high runoff years, LUCICAT simulates higher than the 
observed, as the 90th percentiles of the observed and modelled datasets are 162.1 and 
176.2 mm respectively. The statistics also indicate that LUCICAT simulates the low-runoff 
years well, as the 10th percentiles are the same (55.5 mm). 

The observed and modelled runoffs at Big Brook gauging station (Fig. A.7b) follow a similar 
trend to that of the Jack Rocks station from 1983 to 1997. In 1983 LUCICAT models 
46.5 mm compared to the observed 67.9 mm, following which both datasets show a decline 
in annual runoff until 1987. A range of high and low runoff years is seen until 1998, with both 
datasets matching well. From 1997 to 2003, annual runoff is low (1–35 mm), with LUCICAT 
generally simulating higher than the observed data. This is supported by the statistics in 
Table 4.1, as the modelled 10th and 90th percentiles (13.8 mm and 67.1 mm) are both 
higher than the observed (10.0 mm and 63.2 mm). The scatter graph (Fig. A.8b) also 
supports this, as the trendline sits above the 1:1 line and gives an R2 value of 0.87. 

The runoff for the Cameron Central gauging station is generally very low (0–12 mm), apart 
from 1996, for which observed and modelled annual runoffs are 26 mm and 37 mm 
respectively (Fig. A.7c). LUCICAT models lower runoff in the 1992–95 period and higher 
runoff from 1996 to 1999. Cameron Central has the smallest area of the gauged catchments, 
and also the lowest annual runoff values. As a result, the simulation discrepancies are more 
noticeable. Due to LUCICAT’s high 1996 simulation, the modelled dataset has a higher mean 
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(8.0 mm) than the observed data (7.5 mm), while the observed dataset has higher 10th and 
90th percentile values (Table 4.1). The high-runoff simulation for 1996 influences the scatter 
graph (Fig. A.8c), as the trendline is biased above the 1:1 line. 
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Figure A.7  Observed and modelled annual runoffs at (a) Jack Rocks, (b) Big Brook, and (c) 
Cameron Central  

Modelled streamflows at Serpentine Dam during the 1975–2004 period are varied with a 
general decrease from the 1990s, mirroring the pattern of declining rainfall in that area. Five-
year averages of summer streamflow (December–February) increased slightly from 1985–89 
(0.19 GL) to the 2000–04 period (0.27 GL). Those of winter (June–August) and spring 
(September–November) have both increased from 1985–89 to 1995–99 and decreased from 
1995–99 to 2000–04 (Table A.2).  

Table A.2  Five-year averages of seasonal streamflow at the Serpentine Reservoir 

 Five-year average of streamflow at Serpentine Reservoir   
(GL) 

Season 1975–1979 1980–1984 1985–1989 1990–1994 1995–1999 2000–2004 

Summer  0.15 0.51 0.19 0.21 0.23 0.27 

Autumn 0.47 0.80 0.55 0.72 0.40 0.42 

Winter 18.26 31.66 22.93 29.19 29.48 21.98 

Spring 6.57 16.24 9.35 9.56 16.99 9.31 

(a) (b) 

(c) 
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Figure A.8  Relationships between observed and modelled annual runoffs at (a) Jack Rocks 
614031 (b) Big Brook 614037 (c) Cameron Central 614066 (d) Jayrup 614093 (e) River 
Road 614035 and (f) Cameron West 614064 

(a) (b) 

(c) 
(d) 

(e) (f) 
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The observed and modelled annual streamflows at the Jayrup gauging station were very 
similar (Fig. 4.2a). The low-flow period of 1997–2001 was predicted well, with 1996, 2002 
and 2003 modelled slightly higher by LUCICAT. The scatter graph (Fig. A.8d) picks up this 
bias, as the trendline sits above the 1:1 line. The closeness of the two datasets is reflected in 
the R2 value of 0.97. The percentiles are also very close. The modelled data has slightly 
lower 90th (27.4 mm/28.6 mm) and slightly higher 10th percentiles (4.9 mm/4.8 mm) than the 
observed dataset (Table 4.1).  

The River Road gauge has a long period of record. The runoff varies throughout the 1982–98 
period from 4.6 mm to 78.1 mm, and the modelled dataset follows the trend well, simulating 
both low- and high-runoff years well. The peaks are simulated well, with observed and 
modelled data recording 72 mm and 78.1 mm in 1983 and 76.2 mm and 79.5 mm in 1996. 
LUCICAT models a lower annual runoff in 1992 and higher runoff in 1997 and 1998. The 
mean annual runoff throughout the calibration period for the observed and modelled datasets 
is 28 mm and 29 mm respectively. The scatter graph (Fig. A.8e) supports the accurate 
calibration, with the trendline sitting on the 1:1 line and an R2 value of 0.98. Further statistics 
reveal that LUCICAT tends to overestimate observed data for this gauging station. The 90th 
percentiles are 56.0 mm and 60.9 mm for the observed and modelled dataset respectively. 
The modelled median annual runoff is also higher (19.5 mm) than the observed (15.9 mm).  

The Cameron West calibration is similar to that of Cameron Central, with mean annual runoff 
varying from 0 to 22.2 mm. During 1992–96 LUCICAT simulated lower than observed values, 
then simulated higher values during the low-flow periods of 1998–2000, 2002 and 2003. The 
balance of higher and lower than observed runoffs has produced a scatter graph with a 
trendline that sits very close to the 1:1 line (Fig. A.8f) and an R2 value of 0.88. Further 
analysis reveals that the two datasets vary in certain statistical characteristics. The 90th 
percentiles are higher for the modelled data (16.2 mm) than the observed (14.8 mm), while 
the modelled 10th percentiles are lower than observed (Table 4.1).  

Monthly streamflow  

Plots of modelled and observed runoff at the remaining gauging stations are shown in 
Figure A.9. The flow period error index (EI), Nash-Sutcliffe criteria, correlation coefficient, 
explained variance (EV) and water-balance error were also determined for each gauging 
station (Table A.3).  

Recorded monthly runoff maxima at the Jack Rocks gauging station ranged from 12 to 
65 mm (Fig. 4.4). The flow period index error is very close to 1, indicating that the modelled 
and observed datasets are flowing for the same duration. The Nash-Sutcliffe criterion is also 
close to 1 (0.83), indicating that the modelled data fit well with the observed data.  

Monthly maximum runoff at River Road ranged from 4 to 41 mm (Fig. A.9a). LUCICAT 
tended to cease-to-flow earlier than the observed cessation, which is indicated by the flow 
period error index value of 0.85, indicating that the modelled dataset is flowing for a smaller 
duration than the observed dataset. The Nash-Sutcliffe criterion was evaluated at 0.93, a 
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better result than for Jack Rocks. Similarly to Jack Rocks, LUCICAT tended to simulate 
higher figures than the observed data during the high runoff months. 

The two Cameron sites received the smallest monthly runoffs. Statistically, the model outputs 
for these two sites don’t perform as well as for the other gauging stations. Maximum monthly 
runoffs at Cameron West (Fig. A.9b) and Central (Fig. A.9c) were recorded at 10.6 mm and 
12.5 mm respectively, both in August 1996. LUCICAT generally predicts the number of runoff 
days well, with a flow period error index of 0.79 at Cameron Central. The index at Cameron 
West is lower (0.54), which can be attributed to the July–October period of 1994 when 
LUCICAT modelled dry conditions.  

The Jayrup gauging station has monthly records of runoff from May 1995 until April 2004 
(Fig. A.9d). Maximum monthly runoff reached 21 mm in August 1995. LUCICAT mistimed 
and overjudged this peak, recording 17 mm in August and 25 mm in September. The Nash-
Sutcliffe efficiency is close to 1 (0.86), indicating that the two datasets fit well. LUCICAT 
models the majority of runoff events satisfactorily, with a flow period error index of 0.76. 

The Big Brook gauging station (Fig. A.9e) has the longest period of record, 1983–2004. The 
modelled dataset follows the observed data very well at all magnitudes of flow. The 
maximum monthly runoff was recorded in August 1996 (38.2 mm), which LUCICAT 
simulated very well at 38.5 mm. The flow period error index is close to 1 (0.81), indicating 
that LUCICAT is modelling the majority of runoff events. The Nash-Sutcliffe efficiency is also 
close to 1 (0.89), indicating a good fit.  
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Figure A.9  Observed and predicted monthly streamflows at (a) River Road, (b) Cameron West, 
(c) Cameron Central, (d) Jayrup and (e) Big Brook gauging stations 

 

Table A.3  Monthly statistics 

Measure of fit Value for 
best fit 

Jack 
Rocks 

River 
Road 

Big 
Brook 

Jayrup Cameron 
Central 

Cameron 
West 

Flow period error index (EI)* 1 0.99 0.85 0.81 0.76 0.79 0.54 

Nash-Sutcliffe criterion* 1 0.83 0.93 0.89 0.86 0.51 0.71 

Correlation coefficient 1 0.96 0.97 0.95 0.94 0.80 0.85 

Explained variance (EV) 1 0.83 0.93 0.89 0.86 0.51 0.71 

Water-balance error (%) 0 + 4.2 + 3.3 + 2.2 + 5.4 + 7.2 + 4.9 

* explained in Bari (2005) 

(d) 

(e) 



Projected impacts of climate change WRT 36    Water Resource Technical Series  

 

 

 

74  Department of Water 

 

Daily streamflow  

Modelled and observed daily flows for Jack Rocks, Cameron Central, Big Brook and River 
Road are compared in Section 4.3 with graphs in Figure 4.6.  

Daily runoff at Cameron West is very small, the maximum reaching only 2.3 mm in July 1996. 
Because runoff at this site is so small, discrepancies as small as 0.3 mm are significant 
deviations from the observed dataset. As a result, the modelled and observed daily runoffs at 
Cameron West are not as well matched as at other gauging stations. In the latter half of the 
dataset (1998–2003), LUCICAT simulates the correct flow duration and produces ‘flashy’ 
hydrographs (higher peak flows and early drying out). In the earlier half of the dataset (1991–
97), LUCICAT records a shorter flow duration period and also tends to simulate higher peak 
flows. Daily runoff for 1991 is shown in Figure A.10a. 

The modelled and observed daily runoff datasets at Jayrup are well matched. The average 
annual runoff rate at this catchment is 1.8% and so the maximum daily runoff recorded is 
quite low, 3.2 mm. There are a few instances where the LUCICAT simulation differs from the 
observed data, its flow duration being shorter in some cases than observed. During 1995, 
1998 and 2002, due to the low magnitude, LUCICAT misses an early isolated runoff event 
and therefore modelled runoff begins later than observed. This is also the case for 1996 and 
1999 (Fig. A.10b), where the modelled runoff begins 1–2 weeks later than observed. The 
modelled dataset simulates all magnitudes well, but at times doesn’t model the full 
magnitude of the peak runoff events. This is particularly the case in 1995, when two peak 
runoff events were recorded at 1.7 mm and 1.2 mm, whereas LUCICAT simulated both as 
0.7 mm. It also simulated a lower runoff during 2001; however, the runoff during that year 
was very low, with a maximum of 0.17 mm. During 1997, 1998 and 2000, runoff events in the 
0.1–0.3 mm range tended to be modelled higher.  
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Figure A.10  Daily streamflows at (a) Cameron West (1991) & (b) Jayrup (1999) gauging stations 

 

a) b) 
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Daily flow duration 

Daily flow-duration curves were created for each gauging station. The Cameron Central 
gauging station recorded flow data for the period 1992–2003 and the modelled and observed 
flow durations are similar (Fig. A.11a). This is also the case with the River Road and Big 
Brook gauging stations (Figs A.11b & c), for which the periods of record are 1982–99 and 
1983–2004 respectively. Flow at Jayrup gauging station was recorded from 1995 until 2003. 
The flow-duration curve compared well for all magnitudes of flow (Fig. A.11d). The curves for 
Jack Rocks and Cameron West show good matches for the median to high flows and a 
deviation from observed flow in low-flow periods (Fig. 4.7). 
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Figure A.11  Daily flow duration at (a) Cameron Central, (b) River Road, (c) Big Brook and (d) 
Jayrup gauging stations 

 
 

(c) 

(a) (b) 

(d) 



Projected impacts of climate change WRT 36    Water Resource Technical Series  

 

 

 

76  Department of Water 

Appendix B Calculation of spatial 
distribution of rainfall 
 

Four rainfall stations surrounding the Serpentine Dam catchment were part of the group of 31 
rainfall stations for which downscaled rainfall data were produced. The observed dataset, 
with which the modelled dataset is compared, used 37 rainfall stations throughout and 
surrounding the catchment (Fig. 2.2). As a result, the spatial distribution of rainfall calculated 
using the current-scenario CCAM-downscaled rainfall data was not the same as the spatial 
distribution calculated using observed data. These discrepancies are shown in Figure B.1, 
which illustrates that rainfall with the CCAM data is higher for the majority of the catchment, 
particularly the Big Brook and River Road subcatchment areas, and lower in the 
subcatchments close to the dam outlet. 

Figure B.1  Differences between the observed and the CCAM-downscaled annual rainfalls 
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As these results would bias the catchment yield results at the dam outlet, further analysis 
was carried out to form a relationship between annual rainfalls at each of the 86 
subcatchments of the Serpentine Dam catchment and annual rainfalls at each of the four 
previously mentioned rainfall stations and then use this relationship to run the rainfall 
distribution for all of the GCMs. For each subcatchment, for the period 1975–2004, the 
following equation was solved: 

 

jijjijjijjijij
xdxcxbxay 4321 +++=  

where  

I = subcatchment number (1:86) 

j = year (1975:2004) 

ijy = observed annual rainfall at subcatchment I during year j 

jx1 = observed annual rainfall at Serpentine during year j 

jx2 = observed annual rainfall at Jarrahdale during year j 

jx3 = observed annual rainfall at Wandering during year j 

jx4 = observed annual rainfall at Dwellingup Forestry during year j 

ija ijb ijc and ijd  are unknowns for each subcatchment I and each year j 

For example, annual rainfall at subcatchment 1 in 1975 is calculated by scaling the rainfall at 
each of the four rainfall stations and summing them.  

Figure B.2 shows the average annual rainfall at subcatchment 86, which represents the 
catchment average. The observed dataset was created using the 37 available rainfall 
stations, and the calculated dataset was created using the scaled data from the four rainfall 
stations. The two datasets show similar trends. A plot of the residuals (Fig. B.3) shows that, 
at most, the observed and calculated data differ by 8 mm.  
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Figure B.2  Catchment average rainfall: comparison of observed data from 37 rainfall stations 
(observed) and scaled data from 4 rainfall stations (calculated)  
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Figure B.3  Difference between observed and calculated data  

Figure B.4 shows the differences in rainfall (in millimetres) between the observed data 
(distributed by LUCICAT) and the CCAM current-climate downscaled rainfall data — an 
average value for all 40 simulations and 30 years of data. Comparison of the two datasets 
reveals a large improvement: whereas in Figure B.1 the largest difference was 300 mm, the 
largest difference is now only 30 mm.  
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Figure B.4  Difference between observed and current CCAM downscaled rainfall data — using 
the statistical method 

Table B.1 shows the monthly differences between the downscaled rainfall and observed 
data. The monthly rainfall for the GCMs refers to the average monthly rainfall for 30 years 
averaged for all 40 simulations. All data have been evaluated at subcatchment 86, which 
represents the entire catchment. The greatest variation when comparing current-climate 
monthly rainfalls occurs during the high rainfall months, as the projections for the dry months 
(November–March) are similar for all datasets (Fig. B.5).  

The seasonality of the ECHAM4 model follows that of the observed well, despite simulating 
high rainfalls during June, July and August. The Mk3 displays a seasonal bias, causing the 
projection to be lower than observed in the early months of the annual hydrograph and 
higher than observed in the later stage. The CCAM and HadAM3P models both have a 
similar seasonality and a similar magnitude to those of the observed data. 
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Table B.1  Downscaled current-climate monthly rainfalls compared to observed data 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed data 

(1975–2004) 

            

Rainfall 17 22 21 49 117 165 176 145 100 54 40 15 

ECHAM4  

(1975–2004) 

            

Rainfall (mm) 20 21 34 59.9 117 199 220.6 166 105 44 35 25.2

Difference (%) 16 -4 38 18 0 17 20 12 5 -22 -14 41

Difference (mm)  3 -1 13 11 0 34 45 21 5 -10 -5 10

CCAM  

(1975–2004) 

            

Rainfall (mm) 25 24 31 47 93 163 173 152 121 72 39 27

Difference (%) 31 -28 37 -36 -36 -1 3 6 20 21 -6 25

Difference (mm)  8 2 10 -2 -24 -2 -3 7 21 18 -1 12

Mk3 

(1975–2004) 

            

Rainfall (mm) 19 15 28.2 34 92 153 185 185 138 71 26 22

Difference (%) 11 -48 26 -42 -28 -8 5 21 28 24 -51 32

Difference (mm)  2 -7 7 -15 -25 -12 9 40 38 17 -14 7

HadAM3P  

(1960–1990)  

            

Rainfall (mm) 27 29 24.3 27 106 153 170.7 162 100 42 27 29

Difference (%) 36 24 14 -81 -10 -8 –3 10 0 -28 -48 48

Difference (mm)  10 7 3 -22 -11 -12 -5 17 0 -12 -13 14
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Figure B.5  Mean monthly rainfall, observed and current-scenario simulations 
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Appendix C: Statistical significance of 
sample size 
The statistically significant sample size was determined in a similar way to Stage 1, using ten 
simulations. The standard deviations of the mean annual rainfall for each GCM dataset were 
used as the study variable. The following equation was used to determine the statistically 
significant sample size (Johnson & Bhattacharyya 1996): 
 

2
2/05.0
⎥⎦
⎤

⎢⎣
⎡=

d
St

n  

 

n  =  sample size 

t0.05/2  =  t-value at the 95% confidence limit (2-tailed test, df = n (10) – 1) 

S  =  standard deviation of the study variable 

d  =  desired error margin 

 

Using a desired error margin (d) of 5%, this methodology was performed using the first ten 
simulations of all of the GCM datasets. The current-climate CCAM dataset produced the 
highest sample size (n), at 40. The corresponding S value was 21.05 and the t value 2.262. 
This indicates that the testing of 40 simulations is required to ensure that the error estimation 
of the standard deviation does not exceed 5% at the 95% confidence level. 
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Appendix D: Simulated runoff statistics 
from downscaled rainfall 
 

The following statistics relate to the 30-year average for monthly runoff, and its variation from 
the 40 simulations. The mean, maximum, minimum, 10th percentile, 90th percentile, 
standard deviation and coefficient of variation were all determined for the current and future 
scenarios of the CCAM, Mk3 and HadAM3P GCMs. 

From the current to the future scenario in the CCAM simulations, the mean of the 30-year 
mean monthly runoff decreases every month. The maxima decrease in all months apart from 
March, and the minima decrease every month. The 10th percentile values remain similar; 
however, from June to November the 90th percentile values reduce significantly, by up to 
50%.  

The Mk3 simulations showed similar results to the CCAM simulations, with the mean, 
maximum, minimum, 10th percentiles and 90th percentiles decreasing from the current to the 
future scenario. Greater change was seen during the wetter months of July–September. 

The statistics relating to the HadAM3P simulations showed different trends. The statistics for 
January indicated that runoff would increase for the future scenario. For the Mk3 and CCAM 
simulations, the standard deviation would either remain the same or decrease when 
compared with the future scenario. The HadAM3P simulations are a little different, as during 
January, February and November the standard deviation increases slightly.  
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Table D.1  CCAM monthly runoff statistics 

CCAM  January February March April May June 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

0.16 0.11 0.09 0.08 0.09 0.09 0.18 0.11 0.54 0.34 3.26 1.61 

Max of 
averages 

0.29 0.16 0.13 0.10 0.18 0.12 0.23 0.18 0.71 0.41 4.29 2.18 

Min of 
averages 

0.10 0.07 0.06 0.04 0.07 0.06 0.12 0.08 0.42 0.26 2.51 1.27 

10th 
percentile 

0.12 0.09 0.07 0.05 0.08 0.06 0.14 0.08 0.45 0.28 2.82 1.39 

90th 
percentile 

0.20 0.14 0.12 0.10 0.11 0.11 0.21 0.14 0.63 0.39 3.80 1.87 

St. Dev. 0.04 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.07 0.04 0.42 0.20 

CV 0.23 0.18 0.20 0.22 0.21 0.19 0.15 0.21 0.14 0.11 0.13 0.12 

 

CCAM  July August September October November December 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

12.77 8.29 20.41 12.71 16.07 10.43 6.93 4.39 1.62 1.02 0.38 0.31 

Max of 
averages 

16.48 9.54 27.65 14.58 19.57 12.54 8.28 5.40 2.22 1.50 0.56 0.47 

Min of 
averages 

9.16 6.93 15.99 10.71 12.65 8.70 5.74 3.36 1.15 0.70 0.25 0.17 

10th 
percentile 

11.05 7.29 17.18 11.56 14.04 9.08 6.16 3.79 1.34 0.85 0.27 0.23 

90th 
percentile 

14.30 9.03 22.89 13.97 18.62 11.60 7.86 5.09 1.89 1.19 0.47 0.37 

St. Dev. 1.39 0.63 2.38 0.97 1.69 0.94 0.64 0.52 0.23 0.16 0.08 0.07 

CV 0.11 0.08 0.12 0.08 0.10 0.09 0.09 0.12 0.14 0.16 0.20 0.22 
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Table D.2  Mk3 monthly runoff statistics 

Mk3  January February March April May June 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

0.09 0.07 0.05 0.05 0.08 0.05 0.11 0.08 0.44 0.30 2.34 1.41 

Max of 
averages 

0.14 0.14 0.10 0.07 0.13 0.08 0.15 0.11 0.64 0.37 3.14 1.73 

Min of 
averages 

0.06 0.05 0.03 0.03 0.05 0.04 0.09 0.05 0.33 0.26 1.69 1.08 

10th 
percentile 

0.07 0.05 0.04 0.04 0.06 0.04 0.09 0.07 0.38 0.28 1.86 1.25 

90th 
percentile 

0.12 0.09 0.07 0.06 0.09 0.07 0.14 0.09 0.49 0.33 2.85 1.59 

St Dev 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.06 0.02 0.36 0.14 

CV 0.21 0.26 0.32 0.21 0.21 0.19 0.13 0.12 0.13 0.07 0.15 0.10 

 

Mk3  July August September October November December 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

12.47 8.79 26.58 16.90 21.24 15.99 6.01 5.54 1.25 0.98 0.26 0.22 

Max of 
averages 

16.11 10.94 31.38 20.11 28.31 18.61 7.74 6.79 1.97 1.22 0.45 0.34 

Min of 
averages 

9.94 7.38 22.25 15.01 16.66 14.12 4.79 4.71 0.96 0.78 0.18 0.14 

10th 
percentile 

10.64 7.79 23.80 15.61 19.21 14.52 5.28 5.08 1.03 0.81 0.19 0.16 

90th 
percentile 

14.13 9.88 29.94 18.47 23.62 17.37 6.81 6.04 1.49 1.12 0.35 0.27 

St Dev 1.43 0.76 2.34 1.29 2.12 1.12 0.67 0.45 0.20 0.12 0.07 0.05 

CV 0.11 0.09 0.09 0.08 0.10 0.07 0.11 0.08 0.16 0.12 0.25 0.23 
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Table D.3  HadAM3P monthly runoff statistics 

HadAM3P  January February March April May June 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

0.07 0.10 0.08 0.07 0.08 0.05 0.09 0.05 0.42 0.28 2.76 1.37 

Max of 
averages 

0.11 0.21 0.17 0.23 0.14 0.10 0.12 0.09 0.54 0.35 3.81 2.08 

Min of 
averages 

0.04 0.06 0.05 0.03 0.06 0.03 0.06 0.04 0.31 0.21 1.75 1.03 

10th percentile 0.06 0.07 0.06 0.04 0.06 0.04 0.07 0.04 0.36 0.24 2.07 1.13 

90th percentile 0.10 0.14 0.10 0.10 0.09 0.07 0.11 0.06 0.48 0.31 3.61 1.60 

St Dev 0.02 0.03 0.02 0.03 0.02 0.02 0.01 0.01 0.06 0.03 0.60 0.23 

CV 0.22 0.31 0.27 0.50 0.21 0.29 0.16 0.17 0.13 0.11 0.22 0.17 

 

 

HadAM3P  July August September October November December 

 Current Future Current Future Current Future Current Future Current Future Current Future 

Mean of 
averages 

11.97 5.56 19.66 8.19 10.95 4.04 2.78 1.07 0.47 0.44 0.22 0.15 

Max of 
averages 

15.94 6.35 25.27 10.24 13.31 5.26 3.48 1.39 0.98 0.87 0.44 0.27 

Min of 
averages 

8.20 4.30 15.13 6.62 8.21 3.01 2.23 0.81 0.31 0.21 0.12 0.06 

10th percentile 9.58 5.17 16.89 7.34 9.49 3.58 2.36 0.88 0.36 0.30 0.14 0.10 

90th percentile 14.41 6.04 22.23 8.76 13.22 4.72 3.20 1.24 0.60 0.72 0.29 0.19 

St Dev 1.95 0.38 2.28 0.73 1.30 0.47 0.32 0.14 0.12 0.16 0.06 0.04 

CV 0.16 0.07 0.12 0.09 0.12 0.12 0.12 0.13 0.26 0.36 0.29 0.28 

 

 





Government of Western Australia
Department of Water

 www.water.wa.gov.au




