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summary

The earliest signs of emerging salinity in the Upper Kent catchment were noticed in major
freshwater lakes such as Poorrarecup and Nunijup which became saline in the late 1960s.
The three large lakes of this study retain surface water runoff from the catchment. Their
median salinities are respectively 8000, 10 600 and 15 000 mg/L TDS. Anecdotal evidence is
that Lakes Poorrarecup and Carabundup have not dried up or overflowed in the last 20 years
while Lake Nunijup overflowed briefly in 1982 but there is no inflow data for these lakes.

Good management of the upper catchment is the key to reducing salinity in the Kent River
which is a potential water resource for the south coast region but currently non-potable. Its
catchment was designated as a Water Resource Recovery Catchment (WRRC) under the
State Salinity Strategy (State Salinity Council 2000. After 66% of the upper catchment was
cleared of native vegetation between the 1940s and the 1970s, the annual flow-weighted
mean stream salinity increased from 250 to 2890 mg/L TDS. The large scale of intervention
that will be required for the river to meet the 500 mg/L target by 2030 is reported in the
salinity situation statement for this catchment. This statement required a better
understanding of the lakes which are the subjects of this report.

The LUCICAT model was used to achieve the objectives of this study: to simulate streamflow
and salinity generation processes, understand the salt and water balance of the three lakes,
and assess the impacts of tree planting on lake water level and salinity on Lake Nunijup.

The model successfully represented the daily stream flow generation processes of the
catchment, and generated inflow and salinity series for the lakes which were used to
calibrate the Lake model, in which observed and predicted values matched well.

In the average-flow year of 1990, the spatial distribution of runoff ranged from 3 to 120 mm;
and the salt load ranged from 10 to 4.9 tonnes per hectare (t/ha).

Based on catchment and lake water balance, the annual inflow (1973-2001) to Lake Nunijup
was 0.72 GL, of which about 70% evaporated and 26% seeped through the lakebed.
Average annual salt input to Lake Nunijup was 2080 t, 88% of which seeped through the
lakebed.

The average annual inflow and salt load to Lake Poorrarecup (1973-2001) were 2.65 GL and
5300 t respectively. About 78% of the lake water evaporated and 98% of the salt seeped into
the groundwater.

The average annual inflow (1973-2001) to Lake Carabundup was 1.9 GL, 84% of which
evaporated. Its average annual salt load was 5275 t, 98% of which seeped through the
lakebed.

If 25% of the cleared area of the Lake Nunijup catchment was planted to trees, the modelling
indicated that the median lake salinity would reduce from 8000 to 3600 mg/L TDS. If 50% of
the cleared area was planted to trees, the lake median salinity would be 5300 mg/L TDS with
the lake drying out at times.

Department of Water 1
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1 Introduction

1.1 Purpose and scope

The Kent River catchment is one of five Water Resource Recovery Catchments in the south-
west of Western Australia. Following observations of increasing water and land salinisation,
legislation was imposed in the catchment in 1978 to control further clearing of native
vegetation for agriculture and minimise future salinity increases in the river water. At that time
it was recognised that the potential for development of the Kent River as a water supply
source was a long-term priority and, given how much clearing had occurred in the upper part
of the catchment, salinity was likely to keep rising faster than in the other cleared controlled
catchments.

Salt stored in the unsaturated zone of the soil profile was mobilised by increased
groundwater recharge and rising watertables following clearing, and eventually discharged
into streams (Wood 1924) which became saline (Schofield et al. 1989; Schofield & Ruprecht
1989; Ruprecht & Schofield 1991). How much stream salinity rises depends on annual
rainfall and the extent and location of clearing (Schofield & Ruprecht 1989).

As a part of the Kent River recovery process, the then Department of Environment undertook
two major studies: Salinity Situation Statement: Kent River and this one, on the hydrology of
three major lakes.

While the Salinity Situation Statement: Kent River (De Silva et al. 2007) looked at the
management of the whole upper catchment in terms of stream salinity, this study
concentrates on the hydrology, salt and water balance of just three lakes.

The objectives of this study were to:

¢ simulate the streamflow and salinity generation processes

e understand the salt and water balance of three lakes

e assess the impacts of tree planting on the water level and salinity of Lake Nunijup.

1.2 Upper Kent catchment

The Salinity Situation Statement: Kent River shows that mean annual salinity at the Styx
Junction (Lower Kent) gauging station is still rising but the rate of rise has fallen from 43
(1983-90) to 12 mg/L TDS/yr (1991-98). Salinity at Rocky Glen is also still rising, much more
slowly: the rate of rise falling from 81 (1983-90) to 14 mg/L TDS/yr (1991-98). These
significant rate changes are attributed to the groundwater system reaching a new equilibrium
after clearing, a decline in annual rainfall and extensive bluegum plantations established on a
significant proportion of the cleared areas in the 1990s. The key to lowering salinity in the
Kent River is to manage the Upper Kent catchment.

1.3 Kent lakes

The earliest signs of emerging salinity in the catchment were seen in the salinisation of major
lakes of the upper catchment. Freshwater lakes such as Poorrarecup and Nunijup became
saline in the late 1960s. The three large lakes in the upper catchment — Nunijup,
Poorrarecup and Carabundup — are the natural disposal points for discharge from the
catchment and their salinities may have risen as a result of forest clearing and lower rainfall,

2 Department of Water
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possibly caused by climate change. The lakes are important assets not only as water
resources but also as parts of wetlands that protect the biodiversity of the catchment. As the
lakes and their immediate surroundings provide precious habitat for many native species of
fauna and flora, it is important to protect the buffer zones from salinisation. The local
community also uses these lakes for recreation.

The results are important in understanding the role of lakes and how much salt and water are
stored in the lakes or exported to the main channel of the Kent River. The management
options proposed in the Salinity Situation Statement: Kent River are based on the lake salt
and water balances reported here.

1.4 Methodology

An objective of this study was a basic understanding of the salt and water balances of these
three lakes. The catchment hydrology model (LUCICAT) simulated the streamflow and
salinity generation processes of the catchment and created a long-term inflow series to these
lakes which was used with a simple spreadsheet-type lake model (Peck 2000) to understand
the salt and water balances. The LUCICAT and Lake models were used to evaluate the
effects of tree-planting options on the water level and salinity of Lake Nunijup.

Department of Water 3
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2

2.1 Location and climate

Catchment description

The Upper Kent catchment (the upper catchment), with an area of 1092 km?

, is in the south-

west of Western Australia and lies in the shires of Cranbrook and Plantagenet (Fig. 1).
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Figure 1 Location of the Upper Kent catchment and the three lakes

The climate is generally described as Mediterranean-like with hot dry summers and cool wet
winters. From the inland divide to the coast, mean annual rainfall varies fairly evenly from
550 to 1200 mm, mean annual evaporation ranges between 1500 and 1200 mm and mean
summer maximum temperatures vary from 27 to 24 °C.
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2.2 Physiography and drainage

The upper catchment (Fig. 1) falls completely within the broad physiographic unit of the
Darling Plateau that can be further divided into ancient and rejuvenated landscapes.
Elevation within the catchment ranges from 180 m AHD near the Rocky Glen gauging station
to 400 m AHD (Geekabee Hill) in the upper catchment.

The ancient-landscape part of the upper catchment is characterised by undulating landforms,
broad flats and lakes. The undulating landforms extend from the central zone of broad flats
and lakes up to the catchment divides and mainly have lateritic soils. The central broad flats,
with less than 3 degrees slope, have a number of major lakes such as Nunijup, Poorrarecup
and Carabundup. Being so flat, the ancient landscape has weakly-developed drainage. Most
of the lakes, including Nunijup, Poorrarecup and Carabundup, form an internal drainage area
that occupies 30% of the upper catchment. There have been few observations of overflow
from this area into the river even after large-scale clearing has increased surface water
runoff.

The rejuvenated landscape in the south-west of the upper catchment has a well-developed
dendritic drainage pattern with V-shaped valleys. The soils are generally lateritic, with the
exception of podzols and the loamy red earths.

The broad Tertiary alluvial flats that occupy the central part of the upper catchment mark the
palaeodrainage system of the Darling Plateau. Geological processes associated with the
separation of Australia from Antarctica, including the sagging of the earth’s crust, interrupted
and ended this pronounced northward- and westward-flowing drainage by the Eocene (Smith
1997), about 43 million years ago. In the Late Tertiary (about 38 million years ago), the
sediments associated with the palaeodrainage system were uplifted to their present height of
more than 300 m AHD. This uplift also initiated the present day southward drainage of the
western south coast region, including the Kent River. This relatively short drainage pattern
was rejuvenated by southward tilting (possibly in the Oligocene) which formed the
Ravensthorpe Ramp (Smith 1997).

2.3 Soils and landforms

The Kent River catchment area varies from gently undulating upland plateau in the north to
swampy coastal plain in the south before the river discharges via the Irwin Inlet to the
Southern Ocean. The northern part of the catchment consists mainly of low gravelly ridges
that separate broad and shallow valleys that contain many swamps and lakes, particularly in
the central portion of the upper half of the catchment. The soils of the area, especially in the
upper catchment, are mostly yellow podzolic with lateritic duricrusts and gravels on ridges
with leached sands occurring in depressions overlaying pallid zone clays. Red loams derived
from weathered granite and yellow podzolic soils become dominant in the central and lower
parts of the catchment.

2.4 Vegetation and land use

The native vegetation consists of karri (Eucalyptus diversicolor) forest on the hilly, higher
rainfall areas inland from the coastal strip grading to predominantly jarrah forest (E.
marginata) of medium to low density in the central, intermediate rainfall portion of the
catchment. Mixed jarrah, wandoo, and swamp yate open woodland can be found further
north as rainfall decreases. Broad swampy drainage lines carry paperbark (Melaleuca spp.),
banksia (Banksia spp.) woodlands and sedge swamps while sandy flats have a low-density
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mix of jarrah, marri (E. calophylla), wandoo (E. wandoo) and swamp yate (E. occidentalis).
Much of the forest structure in the upper central and upper portions of the catchment has
been disturbed by timber felling or removed for agricultural development.

Although the history of settlement and development by Europeans is relatively short, the
impacts on the environment have been considerable. The use of forest resources expanded
rapidly between the 1880s and 1920s to cater for local and export timber demand but the
main impacts were on areas close to the coast where supply was plentiful and transport
cheaper.

The greatest impacts of the broadacre clearing of land were in the upper half of the
catchment where less than 10% of the area had been cleared by 1946, 46% by 1965 and
66% by 1978, when, with the emerging realisation of the relationship between clearing and
secondary salinity, clearing controls were placed on the Kent Recovery catchment. By this
time, 40% of the total catchment area had been cleared.

The clearing control legislation limited clearing in the catchment under licence to a further
4800 ha, predominantly in the lower salinity-risk areas. Some 6700 ha of predominantly
‘bush’ areas in the upper part of the catchment were acquired by the then Water Authority as
a result of compensation provisions in the legislation and most of this cleared land was ‘sold’
to nearby landowners, mostly as part of a compensation provision and in an effort to retain
farm viability. The remaining 33 000 ha is private land, protected from outright clearing but at
great risk of degradation from the impacts of grazing, waterlogging and salinity. Some areas
have been replanted with both commercial and non-commercial tree species, depending on
the capability, or state of degradation, of the land involved.

6 Department of Water
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3 Hydrogeology
3.1 Hydrogeological setting

The three lakes — Nunijup, Poorrarecup and Carabundup — are located within the Albany—
Fraser Hydrogeological Province and on major lineaments identified by magnetic intensity
surveys. The Boyup Brook Fault runs close to Poorrarecup and Carabundup whereas Lake
Nunijup is on the Tenterden Fault.

The lakes are mainly within the Quaternary (Q) and Tertiary (T) or Cainozoic (Cza)
sedimentary formations (Fig. 2) Under these lakes, the sedimentary profile may extend into
weathered and fractured bedrock at around 30 m depth. The sedimentary profile may
comprise clay, lignite, sand and gravel. Some of the lakes are also associated with Eocene
or Miocene Palaeochannel Sediments. These three lakes are bounded by lunettes formed
during periods of arid climate by wind that reworked the sediments of the lake floors.

Groundwater in areas close to these lakes is very shallow — from 0.5-3 m below ground
level (m bgl) with up to a metre variation seasonally. In some situations, the lakes are
considered to be a ‘window’ to the groundwater.

The salinity range of groundwater under these lakes is 10 000—15 000 mg/L TDS, which is
much less than under lakes like Lake Toolibin where groundwater salinity exceeds

35 000 mg/L. This difference in salinity can be attributed to differences in rainfall: the Kent
lakes are in the intermediate rainfall zone whereas Lake Toolibin is within the low rainfall
zone.

3.2 Lake-groundwater flow regimes

Based on the groundwater flow regimes in and around them, the lakes can be classified into
three main groups: flow-through, discharge and recharge (Fig. 3). Flow-through lakes have
capture zones on their upgradient side and release zones on their downgradient side (Fig. 3).
Groundwater discharges in the capture zone and lake water recharges the groundwater
aquifer in the release zone.

According to Townley et al. (1993), some lakes on the Swan Coastal plain move between
recharge and flow-through regimes or between flow-through and discharge regimes without
necessarily fluctuating all the way between recharge and discharge regimes. Monitoring of
the lake water and groundwater indicates that Lake Nunijup fluctuates all the way from
recharge and flow-through to discharge regimes.

Department of Water 7
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3.3 Case study — Hydrogeology of Lake Nunijup

The area around the lake is mainly underlain by weathered basement rocks (Pg and Pn),
Cainozoic surficial sediments (Cza) and Tertiary palaeochannel sediments (Tpw) (Fig. 2).
Lake Nunijup is on a broad flat of Cainozoic sediments (Cza) and Palaeochannel sediments
(Tpw). The profile of Cainozoic sediments, which are widespread in the Lake Nunijup area,
consists mainly of clay with ironstone gravels and an indurated ferricrete layer within the top
3 m. The salinity of groundwater within this aquifer varies significantly, from 1800 mg/L at NU
6 to 15 000 mg/L at NU 3. Figure Al.1 in Appendix 1 shows the locations of the groundwater
monitoring bores on an aerial photograph taken in 1999, and Figure Al1.2 shows the
hydrogeology.

Bores NU 8, 9 and 12 were drilled into the paleochannel sediments. The general profile of
these sediments is of about 7 m of clay overlying fine- to coarse-grained sand with an
indurated ferricrete layer within the top 2—3 m. The palaeochannel sediments aquifer is
confined by a layer of clay in NU 8 and 9 but, in NU 12 near the lake, this aquifer is
unconfined and the depth to palaeochannel sand is less than 3 m. Groundwater salinity
varies from 6500 to 14 000 mg/L although during drilling a relatively fresh water layer, with
salinity about 1800 mg/L, was observed above the saline groundwater.

The weathered bedrock aquifer (Pn) bounds the western edge of Lake Nunijup. Bores NU 4
and 5 are drilled into this aquifer. The profile consists of ironstone gravelly clay, ferricrete and
grey kaolinitic clay that grades into saprolitic grit (fragments of moderately weathered
basement rock). The groundwater salinity ranges from 8000 to 13 900 mg/L. A transect
across the valley through bores NU 7, 6 and 5 would show a significant decrease in salinity
towards the lakes. Groundwater salinity also decreases significantly in the downgradient side
of Lake Nunijup compared to background groundwater salinity values, possibly because less
saline lake water is recharging groundwater (Fig. A1.3).

3.3.1 Groundwater monitoring

Groundwater is generally shallow; < 3 m below ground level (Fig. 4). NU 9, drilled into a
palaeochannel, has the shallowest water, with the water level about 0.3 m below ground
level in October 2001 but about 1 m below ground level in March 2002 after
evapotranspiration during summer. NU 5, in weathered bedrock, has the deepest water level
and fluctuated between 2.1 m and 2.6 m below ground level during winter and summer.

Figure 5 shows the interactions between groundwater and lake water levels. Following winter
rainfall, the lake level stabilises above the groundwater levels indicating that lake water may
be recharging the underlying groundwater. However, during summer, lake levels appear to
fall below groundwater levels (NU 2) which would enable groundwater to discharge through
the lakebed. Long-term monitoring of groundwater and lake water is required to find the level
of lake water that initiates groundwater discharge into the lakebed.
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Figure 4 Groundwater levels in monitoring bores from August 2001 to June 2002
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Figure 5 Groundwater and lake levels near Lake Nunijup
3.3.2 Groundwater flow

Groundwater contours and flow lines were constructed using groundwater level
measurements for December 2001 (Fig. A1.4) and March 2002 (Fig. A1.5). Two major
groundwater flow systems were identified: through the Surficial and Palaeochannel
Sediments (Flow 1) and through basement rocks (Flow 2). Groundwater flow across NU 9 to
NU 3 represents Flow 1 with a hydraulic gradient of 0.001 across Nunijup Lake. Flow 2 is
generally from west to east towards the broad flat. The gradient of Flow 2 is about 0.01, and
steeper than that of Flow 1.

Groundwater flow near the lake showed considerable seasonal variation during December
2001 to March 2002. Groundwater flow in December (Fig. A1.4) suggested that groundwater
flows through the underlying sediments of the lake system in response to winter recharge to
the groundwater system from May to September. However, when lake levels drop due to
evaporation from the lake surface from January to March, groundwater may start discharging
into the lake as demonstrated by the flow lines in March (Fig. A1.5).
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3.4 Lake and groundwater interactions

Four main types of lake water and groundwater interaction can occur in Nunijup Lake,
depending on factors such as inflow to the lake, evapotranspiration losses from the lake and
from groundwater, and recharge to groundwater.

e Interaction # 1: Lake level > groundwater level and groundwater level > lake
bottom

In this scenario, the lake level rises as surface water flows into the lake after winter and
spring rainfall. The lake water recharges the groundwater system (net gain) through the
lakebed and the lake loses salt into the groundwater system. This results in increasing
groundwater seepage areas downstream and the lake also overflows. During this period,
lake remains as a recharge lake (Fig. 3).

e Interaction # 2: Lake level = groundwater level and groundwater level > lake
bottom

This scenario may exist in January and February when the high evapotranspiration rate
makes water loss from the lake faster than loss from the shallow groundwater. The lake
changes from a recharge to a flow-through lake (gain or loss to groundwater). Figure Al.4,
based on December groundwater levels, shows groundwater-contour pattern around the lake
for a flow-through regime.

e Interaction # 3: Lake level < groundwater level and groundwater level > lake
bottom

With further reductions in lake level due to evapotranspiration losses during March and April,
the flow regime changes from flow-through to discharge (Fig. 3). Groundwater discharges
into the lake (net loss) and the salt load in the lake increases. The rise of groundwater levels
in the areas adjacent to the lake will be controlled in this scenario as significant volumes of
groundwater discharged into the lake then evaporate. Figure Al.5, based on March
groundwater levels, shows the groundwater flow pattern around the lake for this interaction.

e Interaction # 4: Lake level > groundwater level and groundwater level < lake
bottom

This scenario may not eventuate under current land use practices in the Nunijup catchment
as groundwater levels have risen significantly in relation to the lake bottom since clearing.
Groundwater levels need to be lowered by 3 m to achieve this level of minimum interaction
between the lake and groundwater. It may not be possible to maintain current lake levels
under this scenario but this interaction can be considered as posing the minimum salinisation
risk to the catchment and lake.

The groundwater—lake interactions of Lake Nunijup are discussed in detail using a
FLOWTHRU model (Appendix 2) and show that the groundwater flow regime changes from
time to time in response to stress conditions.

Because there has been a history of groundwater—lake interaction studies at Lake Toolibin
(in the Wheatbelt of Western Australia), its hydrogeological characteristics are compared with
those of Lake Nunijup (Table 1). The groundwater flow regimes are quite different: the
groundwater—lake interaction of Lake Toolibin is limited by the presence of a thick lacustrine
plastic-clay layer (De Silva 1999) while Lake Nunijup is likely to be partly filled by
groundwater.
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Table 1 Comparison of Lakes Toolibin (Wheatbelt) and Nunijup (Kent)

Characteristic Lake Toolibin Lake Nunijup

Mean annual rainfall 400 mm 500 mm

Mean annual evaporation 1900 mm 1500 mm

Lake floor 10 m thick plastic clay Sand, gravel

Aquifer Confined Unconfined or watertable

Groundwater pressure/level

Groundwater salinity

Lake salinity (median)

Lake level

Groundwater—lake interaction (winter)

Groundwater—lake interaction
(summer)

Impact of groundwater discharge
on salt balance (lake)

Impact of groundwater discharge on
salt balance (soil, shallow sediments)

0.2 m above lake floor
(potentiometric head)

35 000 mg/L TDS

Dry most of the time
No interaction
No interaction

No contribution

Salt accumulation in soil
and sediments

Same as ground level to 1 m below
ground level

10 000 mg/L TDS

8000 mg/L TDS (fresh before 1970)
Not dry since 1983

Flow-through

Discharge

Salt loss — winter
Salt gain — summer

12
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4  Salinity and flow characteristics
4.1 Hydrology

The Kent River (Fig. 6) has two distinct features: the lower reaches have a younger,
rejuvenated drainage system that flows in a southerly direction (Lower Kent), while the upper
reaches have a more stagnant weakly-developed drainage system (Upper Kent) that flows in
a westerly direction.

The upper Kent River, especially in its northern reaches, has several lakes and swamps that
fall within broad flats landform (Fig. 6). About 30% of the upper catchment drains into these
lakes that include Nunijup, Carabundup, Nukennullup, Poorrarecup, Wambalup and
Katherine. Some, such as Nunijup, Poorrarecup and Carabundup, can overflow into the Kent
River, but do so only in peak flood events (Lake Nunijup last overflowed in 1982). Collins and
Fowlie (1981) noted that, although these lakes filled well in the winter of 1978, they made no
apparent contribution to the flow and salinity of the Kent River. Most of these lakes are
bounded by lunettes formed during past periods of arid climate by wind that reworked the
sediments of the lake floors.

Three main stations gauge flow on the Upper Kent River: Rocky Glen which has operated
since the late 1970s and Perillup Road and Watterson Farm that have operated since 2000.
The Lower Kent River is gauged by the Styx Junction gauging station, at the confluence of
the Styx and Kent rivers, with flow and salinity records from 1956 (Styx Junction is also a
potential dam site for a water supply reservoir). Fortnightly grab samples are taken
throughout winter from 20 sample sites operating in the catchment since 2000.

The definition of drainage lines was determined using the Digital Elevation Model (DEM)
prepared by the then Department of Land Administration, now Department of Land
Information for the Land Monitor Project. In areas where drainage lines were not strongly
developed by the topography, and mapping of streams was available from topographic
maps, drainage was constrained to following mapped streams.

4.2 Runoff and salt load

The mean annual runoff (1979-2001) at Rocky Glen was 25 mm but annual runoff varies
widely year by year depending on rainfall. The highest and the lowest annual runoffs were
observed in 1988 and 2001. Mean annual salt discharge at Rocky Glen was 754 kg/ha and
the annual salinity range was 600 to 6500 mg/L TDS.

Most of the streams above Rocky Glen flow during winter. When the rainy season starts in
May/June, most of the streams start flowing with very high salinity (more than 10 000 mg/L)
due to the flushing of salts stored in the stream zone during the summer months. The lowest
daily salinity is generally observed during July—August when the catchment generates most
of the runoff. By November, nearly all the streams stop flowing.

LUCICAT is a distributed conceptual catchment hydrology model used to successfully
represent the daily flow and salinity generation process of the Upper Kent (see
Appendices 3, 4 and 5 for details of modelling and calibration).
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4.3 Distribution of runoff, salt and salinity

LUCICAT predicted the distribution of annual runoff, salt load and salinity for a representative
year (Figs 7, 8 & 9). The distribution of runoff generally reflects the distribution of rainfall

(Fig. 6), land use cover, and, to a lesser extent, catchment characteristics. The highest
runoff, in excess of 100 mm/year, was from the western wetter part of the catchment, while
the yield from the eastern drier part of the catchment was less than 10 mm/year (Fig. 7).
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Figure 6 Stream network, subcatchments, lakes and land use of the upper catchment

The generation of salt load was particularly dependent upon the proportion of the catchment
area cleared and annual rainfall (Fig. 8). Salt loads between 2350 and 4910 kg/ha were
predicted from the more extensively cleared western, high-rainfall subcatchments. The salt
yield from the eastern drier part of the catchment ranged from 380 to 10 kg/ha (Fig. 8).

The salinity of the runoff generated across the catchment was very variable (Fig. 9), ranging
from 270 to 5930 mg/L TDS. Higher salinities were generally associated with lower rainfall
and a relatively larger proportion of cleared area.
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5 Salt and water balance of the lakes

5.1 Surface water inflow to the lakes

Inflows were estimated from application of the LUCICAT model. Annual median inflow to the
Nunijup Lake was the lowest, at 0.67 gigalitres (GL), significantly lower than the lake volume
at the overflow level (Table 2). Median inflows to Lakes Carabundup and Poorrarecup are
1.55 GL and 1.98 GL respectively.

Table 2 Modelled lake inflow and overflow characteristics

Lake Annual inflow Volume at

(GL) overflow
10" percentile Median 90" percentile (GL)
Nunijup 0.14 0.67 1.46 2.32
Carabundup 0.79 1.55 3.54 5.17
Poorrarecup 1.05 1.98 3.52 4.98

5.2 Lake Nunijup

Lake Nunijup is in the north-eastern corner of the upper catchment. This lake and wetland
are accessible via Stockyard Road that connects to Albany Highway near Tenterden. When it
reaches its overflow depth of 3.9 m, the lake has an area of 0.79 km? and can hold 2.32 GL.
Its catchment has an area of 100 km? (Fig. 10). The average rainfall at the Cranbrook
meteorological station (10537), about 15 km north-east of the lake, is 508 mm. Mean annual
pan evaporation for the area is about 1500 mm.

Elevation within the catchment ranges from 230 m AHD near the lake to 400 m AHD near
Geekabee Hill. The lake is bounded by a 5 m-high lunette on the southern side of the lake
and its outflow point is on the eastern side of the lake. Other surface water bodies in this
catchment include Little Nunijup Lake and Murdellup Lagoon.

Extensive Quaternary and Tertiary sediments that form an aquifer with shallow groundwater
levels occupy 38 km? or 38% of the subcatchment. All the lakes and swamps are in this area.
Weathered basement rocks, mainly granites and gneisses, underlie the rest of the
subcatchment in an undulating landscape. Rocks of Stirling Range Formation form
Geekabee Hill near the north-eastern corner of the catchment.

In this lake’s catchment, clearing native vegetation started in 1860, by 1965, 39% of the area
had been cleared and in 1978, when clearing control legislation was enacted, 59% of the
catchment had been cleared. Clearing caused the salinisation of Lake Nunijup and the
surrounding wetland. This lake had been an important source of the area’s stock quality
water, especially during droughts, but now salinity and waterlogging are the main land
management issues in this catchment.

The salinity of the lake has been increasing steadily since 1988. Its salinity ranges from
about 1000 mg/L in 1988 to about 11 000 mg/L in 2001 but was recorded at 61 000 mg/L in
1984. The median salinity for the lake is 7750 mg/L.
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Shire of Cranbrook records show that lake water quality fluctuated between 3400 and

4500 mg/L from 1974 to 1975. Surface water sampling in 1973 by the Department of
Agriculture indicated that the river salinity was between 560 and 3260 mg/L. Yate Flat, north
of Lake Nunijup, recorded the highest salinity levels.

According to local farmers, in 1963 the lake water was fresh (< 500 mg/L) and used for
drinking. By 1976, water had deteriorated to stock quality and was used for lawn irrigation
(Andrew Maughan, personal communication).

During the winter of 1978, all three lakes filled but did not appear to contribute to flow and
salinity in the Kent River. Lake Nunijup showed evidence of being sustained by shallow
groundwater. The lake salinity varied between 5000 in August 1978 and 10 000 mg/L in
February 1979 (Collins & Fowlie 1981).

Records on the overflow history of the lakes are rare. The last overflow from the lake was in
January—February 1982, following a 180-mm rainfall event (local landholder Mr Bruce
Parson’s observation). Hydrological monitoring from 2000 to 2002 at Koonje Road (Sth) and
Koonje Road (Nth) (Fig. 10) indicated that annual inflow and salt load for this period were
326 ML and 1335 t respectively. The flow-weighted annual salinity range is 2200-4600 mg/L.

Examination of aerial photographs taken in 1965 and 1999 shows that the perimeters of most
lakes in the catchment, including Lake Nunijup, expanded during this period indicating that,
following clearing, lake levels rose significantly between 1965 and 1999.

5.2.1 Lake levels and salinity

The inflow and salt load predicted by LUCICAT were used to calibrate the Lake model,
starting from January 1973. Outflow channel characteristics (width, slope and roughness)
were estimated from field observation and calibration.

The water levels predicted by the Lake model match observed levels reasonably well, except
for the periods 1981-84 and 1988-91 (Fig. 11a) when some of the early recorded data seem
to be of poor quality. The inflow series predicted by the catchment model is considered to
reasonably represent the catchment contributing to the Lake Nunijup.

During the period 1973-2001, the average annual inflow was 0.72 GL and average annual
rainfall on the water surface of the lake was 0.035 GL. About 70% of the total input
evaporated, 26% seeped through the base of the lake to the deep aquifer systems, and the
rest was stored in the lake (Appendix 6).

The predicted salinity of the lake generally followed the observations, except for a significant
underprediction in 1981-84 (Fig. 11b). The median salinity was in the order of

8000 mg/L TDS. (The predicted salinity of the lake was fixed to a maximum of 50 000 mg/L.)
The annual average salt input to the lake, including the salt from rainfall, was 2080 t
(Appendix 6). Most of the salt (88%) was lost due to net leakage through the lakebed and
little is being stored in the lake.
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Figure 11 Observed and modelled (a) water level and (b) salinity of Lake Nunijup

5.3 Lake Carabundup

Lake Carabundup is in the Nukennullup subcatchment. In a hydrological study carried out in
1978, Collins and Fowlie (1981) categorised this lake as typically ephemeral or seasonal. It
has an area of 1.85 km?, can hold 5.17 GL at the overflow level and will have a maximum
water depth of 4 m at full capacity. The catchment draining to the lake has an area of

127 km?. This catchment has other lakes, including Nukennullup, Stockyard and Mineral
(Fig. 12). These lakes have a surface area of about 300 ha.
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Elevation within this subcatchment varies from 215 m AHD near Lake Carabundup to

285 m AHD. Within the broad flat landscape that contains most of the lakes, elevation only
changes from 215 to 240 m AHD. Lake Carabundup is bounded by a 5-10 m high lunette.
The outlet point is near the lower north-eastern side but there are no records of outflow and
the lake has probably not overflowed during the past 30 years. In its rare overflow events, it
overflows directly into the Kent River.

Extensive Quaternary and Tertiary Sediments that form an aquifer with shallow groundwater
occupy 54 km? or 42% of the subcatchment: all the lakes and swamps are within this area of
sediments. Weathered basement rocks, mainly granites and gneisses, underlie the rest of
the subcatchment in an undulating landscape.

Most of the clearing in the catchment occurred after 1946. Between 1965 and 1978 the
extent of clearing increased from 43% to 63%. By 2002, as a result of extensive commercial
plantations of Tasmanian bluegums, the cleared area had decreased to 38%.

Seasonal variation in lake salinity was observed in 1978 and 1979: from about 10 000 mg/L
in August 1978 to the salinity of seawater (35 000 mg/L) as evaporation during summer
dropped the lake level. This pattern was repeated in 1979 (Collins & Fowlie 1981). Since
1990, this seasonal or ephemeral nature has probably changed and lake salinity and levels
are more stable probably due to increased runoff after clearing and lake levels sustained by
the discharge of shallow groundwater. The lake can now be considered as a perennial saline
lake with a median salinity (1981-99) of 18 600 mg/L TDS.

Examination of aerial photographs taken in 1965 and 1999 shows the effects of extensive
bluegum plantations on surface water inflow to the lakes. By 1999, some of the small lakes in
the catchment had dried up while the water level of Lake Carabundup had dropped slightly
compared to 1965.

5.3.1 Lake levels and salinity

Lake water level and salinity data were collected during the period 1981-2001. The water
level data for 1981-88 is of poor quality. Records and anecdotal evidence indicate that no
overflow during 1973-2001 (Fig. 13a). The Lake model successfully simulated water levels
for 1988 onward (Fig. 13a). During 1973—-2001, the average annual inflow and rainfall on the
lake surface totalled 1.9 GL. Average evaporation and seepage were 1.5 GL (84%) and
0.35 GL (18%) per year respectively (Appendix 6).

The median salinity of Lake Carabundup was 15 000 mg/L TDS and generally higher than
that of Nunijup (Fig. 13b). The Lake model successfully predicted its salinity, except for under
prediction during 1979-86. The average annual salt input, including salt from rainfall, was
5275 t, of which 98% seeped into the groundwater system (Appendix 6).
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Figure 13 Observed and predicted (a) water level and (b) salinity of Lake Carabundup

5.4 Lake Poorrarecup (Big Poorrarecup Lagoon)

This lake, in the northern part of the upper catchment close to the watershed between the
Kent and Frankland rivers, has an area of 1.99 km? and can hold 4.98 GL at its outflow level
when the lake is about 3 m deep. It is one of the biggest lakes in the upper catchment and
showed evidence of being sustained by shallow groundwater (Collins & Fowlie 1981).
Median salinity (1981-99) is 9200 mg/L TDS. The Poorrarecup subcatchment has an area of
94 km?, but only 59 km? drains into the lake (Fig. 14). The rest drains into a number of
seasonal lakes and swamps downstream of Lake Poorrarecup with a total area of 3.8 km?.

Elevation within this subcatchment ranges between 220 and 310 m AHD with all the lakes
within a broad flat between 220 and 225 m AHD and Lake Poorrarecup at 225 m AHD. The
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lake is bounded by a 4-5 m high lunette. There are no records of outflow and the lake has
probably not overflowed during the past 30 years although the southern outlet point is not
clearly defined and the lake may overflow into a seasonal lake system downstream.

Extensive Quaternary and Tertiary Sediments that form an aquifer with shallow groundwater
occupy 47 km? or 50% of the subcatchment. All the lakes and swamps are within this area of
sediments. Weathered basement rocks, mainly granites and gneisses, underlie the rest of
the subcatchment in an undulating landscape.

Clearing began before 1946, mainly in areas draining to the lake. By then, 14% of the
subcatchment was cleared of native vegetation. Clearing increased significantly between
1950 and 1955 and, by 1965, 46% of the subcatchment had been cleared, mainly areas
draining to the lake. Since 1965, other areas of the subcatchment were cleared as well.
When clearing controls were enacted in 1978, 63% of the subcatchment had been cleared.
With extensive commercial bluegum plantations established, only 36% of this catchment is
now cleared.

Aerial photographs taken in 1965 and 1999 show the effects of the plantations on surface
water inflow. By 1999, some of the small lakes in the catchment had dried up while lake
levels had dropped significantly compared with 1965. The reduced inflow is the opposite of
what is happening in the Lake Nunijup catchment where there has been little revegetation
since 1996.

5.4.1 Lake levels and salinity

Water level and salinity data are available for the same period as for the other lakes. Lake
Poorrarecup did not overflow during 1973-2001. Lake level data collected during 1981-88
are questionable (Fig. 15a). The predicted and observed lake levels for 1988—99 are well
matched. From 1999 onwards, the predicted water levels were slightly lower than observed
levels (Fig. 15a). During 1973-2001, average annual inflow and rainfall to the lake was

2.6 GL. Average annual evaporation and net seepage to groundwater from the lake were
2.1 GL (78%) and 0.5 GL (18%) respectively (Appendix 6).

Lakes Poorrarecup and Nunijup have similar salinities (Fig. 15b). The median salinity of Lake
Poorrarecup is 10 600 mg/L and ranged between 3000 and 70 000 mg/L TDS. The Lake
model successfully predicted the lake salinity, except for some extreme values, until 1999,
then under predicted it (Fig. 15b). During 1973—-2001, average annual salt input, including the
salt from rainfall, was 5300 t, of which 98% seeped into the aquifer (Appendix 6).

Department of Water 25



Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26 Salinity and Land Use Impacts Series

520;000

Poorrarecup
subcatchment

6200000
1

- Frankfancf '

by 6041041
53;' .
87 |

Kybellug ‘- m“b
= i

6041013041040
Big

Porrarecua |

6041021

Tootanellup
Lagoon

80410346041035 B
-y 4 |

1

Porrarecup
Leg end subcatchment

i:[ Upper Kent catchment
[ subcatchment
@ Sampling point
—— River
Road

: Blueglum plantation
Native vegatation

- Cleared area
Bl ke

Location map

Report Custodian: 0 2 4 N
SLUI 26 Jayath de Sikva| km
Fil S Lu 262040001 Data: 4 of A
ename: 1 Department
Kent_three_iakes_figuri4.mxd 1611105 il Environment
i

Figure 14 Hydrology of Lake Poorrarecup (fix blueglum, vegetation, Poorrarecup

26 Department of Water



Salinity and Land Use Impacts Series Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26

224

Modelled WL —e— Water Level Outflow Level @

222 A

Water Level (m AHD
N
N
o

216 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Jan-73 Dec-76 Dec-80 Dec-84 Dec-88 Dec-92 Dec-96 Dec-00

100000

M odel Salinity
—e— Salinity Sample

Lake Salinity (mg/L TDS)

1000 T T T T T T T
Jan-73 Dec-76 Dec-80 Dec-84 Dec-88 Dec-92 Dec-96 Dec-00

Figure 15 Observed and predicted (a) water level and (b) salinity of Lake Poorrarecup

Department of Water 27



Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26 Salinity and Land Use Impacts Series

6

Management options

The lakes should be managed to:

minimise salinisation and waterlogging in the surroundings and the subcatchments
protect habitat for native flora and fauna

understand relative contributions to the Kent River flow and salt load

improve water resource potential of the lakes (e.g. Lake Nunijup)

improve recreational values (e.g. Lake Poorrarecup).

After reasonable calibrations of both the Lake and LUCICAT models, catchment
management scenarios, using daily rainfall and pan evaporation data generated for the
period 1973-2001, were incorporated. Only the catchment area of the Nunijup Lake was
modelled. The management scenarios for Lake Nunijup are:

1

‘Do nothing different’: This scenario shows that the inflow series will be similar to the
one predicted for 1985-2001. The Lake model shows that the long-term steady-state
median salinity and water level of the lake will not be significantly different from
present values (8200 mg/L TDS). Annual inflow is 8.2 mm and salt load is 2080 t.

Planting trees on 50% of the cleared area: The mean annual inflow and salinity will
fall to 3.2 mm and 890 mg/L TDS respectively and inflow salt load will only be 285 t,
which is less than the annual mass of salt in rainfall (500 t). The low-inflow salt load
indicates that groundwater has stopped discharging. The median lake salinity will fall
to 5300 mg/L TDS. With significantly reduced inflow the lake will dry out some of the
time.

Planting trees on 25% of the cleared area: The mean annual inflow and salinity would
go down to 5.4 mm and 1750 mg/L TDS respectively. The inflow salt load would be
945 t. Because there would be more water in the lake, its median salinity would be
3600 mg/L TDS, less than half the salinity expected for the 50% planted option.

28
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7 Conclusions

7.1 The catchment

The Upper Kent catchment covers an area of 1092 km?. The annual runoff for the period
1979-2001 ranged from 7 to 78 mm and averaged 25 mm. Following clearing of 66% of its
area, the average annual salinity and salt load from the catchment increased to

3065 mg/L TDS and 771 kg/ha respectively.

The LUCICAT model was successfully calibrated to match the distribution of the runoff and
salt load, and to generate daily streamflow and salinity series. Annual runoff and salt loads
are strongly related to the annual rainfall and the proportion of cleared areas. In 1990, a
typical average-flow year, the distribution of runoff ranged from 3 to 120 mm; and the salt
load ranged from 10 to 4910 kg/ha.

7.2 The lakes

Lake Nunijup has a capacity of 2.32 GL at the overflow depth of 4.4 m. During 1973-2001 it
had no predicted overflow, an average annual input of 0.76 GL of which 70% evaporated and
the rest seeped through the lakebed. Its median salinity was in the order of 8000 mg/L TDS.
Average annual salt input was 2080 t. About 88% of the salt seeped through the lakebed and
the rest is being stored in the lake.

Lake Carabundup has a capacity of 5.2 GL m. During 1973-2001 it did not overflow, its
average annual inflow plus rainfall on the lake totalled 1.9 GL, and average annual
evaporation and seepage from the lake were 1.5 GL and 0.35 GL respectively. Its median
salinity (15 000 mg/L TDS) was much higher than the other two lakes. Average annual salt
input was 5275 t of which 98% seeped into the groundwater.

Lake Poorrarecup has a capacity 4.98 GL. During 1973-2001, it did not overflow, its average
annual inflow and rainfall on the lake totalled 2.6 GL, its average annual evaporation and net
seepage were 2.1 GL and 0.5 GL respectively. Its median salinity was 10 600 mg/L TDS with
a range 3000 mg/L to 70 000 mg/L TDS. Its average annual salt input was 5300 t, of which
98% seeped into the aquifer.

7.3 Groundwater-lake interaction

There is a lot of interaction between these lakes and groundwater, mainly due to the
presence of unconfined permeable aquifers with shallow watertables. Groundwater flow
regimes can change from flow-through in winter, when the lakes can lose or gain salt, to
discharge in summer when the lakes can only gain salt.
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8 Recommendations

Use latest streamflow data generated in the Salinity Situation Statement: Kent River as the
input to the Lake Model for the three lakes.

Extend the management-options approach to the other subcatchments (Poorrarecup and
Carabundup).

Continue monitoring groundwater, lake levels and sample sites.
Document future overflows of the lakes.
Document land-use changes like plantations and harvesting.

Update this report at least every five years with the latest salinity and flow information.
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Appendix 1— Hydrogeology

Bore construction

As a part of hydrogeological investigations, 12 groundwater monitoring bores were installed
around Lake Nunijup in April 2001 (Fig. Al1.1). Construction and lithological details of these
bores can be found in the bore completion report (De Silva 2001). Summaries of bore details
are included in Table Al.1. All the bores were surveyed and groundwater levels and salinity
have been monitored monthly since August 2001.

Subcatchment
Boundary
N
500 0 500 1000 Metres A

Figure A1.1 Locations of groundwater monitoring bores around Lake Nunijup
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Table A1.1 Summary of groundwater monitoring bores

Bore ID  Northing Easting Drilled Salinity Water level Aquifer
depth (m) (mg/L TDS) (m bgl)

NU 1 537386 6192122 10 4125 3.25 Sediments (Q)

NU 2 538196 6192408 18.3 5950 2.1 Sediments (Q)

NU 3 538503 6192190 10 15000 2.3 Sediments (Q)

NU 4 537297 6192794 10 13900 4.6 Weathered bedrock (Pn)

NU 5 536663 6192811 10 8000 2.3 Weathered bedrock (Pn)

NU 6 537296 6193342 10 1800 0.5 Sediments (Q)

NU 7 537873 6193597 15 18370 2.1 Sediments (Q)

NU 8 537426 6194005 15 10000 0.88 Werillup Formation
(Tpw)

NU 9 536697 6194120 15 6500 0.6 Werillup Formation
(Tpw)

NU 10 536607 6193484 10 13500 0.95 Sediments (Q)

NU 11 537246 6191805 10 11300 1.1 Sediments (Q)

NU 12 537775 6193176 15 14000 1.4 Werillup Formation (Q)

Hydrogeological setting

Lake Nuniju

Catchment Bounda

Cza — Cainozoic sediments Tpw — Werillup Formation Pg — Proterozoic granites Pn — Proterozoic gneisses

Figure A1.2 Hydrogeology of Lake Nunijup
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Groundwater salinity
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Figure A1.3 Salinity of groundwater near Lake Nunijup
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Figure A1.4 Groundwater flow following winter recharge

(based on water level measurements — 28/12/2001)
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Figure A1.5 Groundwater flow following evapotranspiration over summer
(based on water level measurements — 28/03/2002)
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Appendix 2 — Application of the FLOWTHRU
groundwater model

FLOWTHRU (Townley & Barr 2001) displays groundwater flow patterns in an aquifer near a
surface water body. It is based on groundwater flow patterns in a two-dimensional vertical
section through a shallow surface water body. The vertical section needs to be aligned with the
direction of regional groundwater flow and the water body is long in the direction perpendicular
to that section. FLOWTHRU can also be applied to three-dimensional flow near flow-through
lakes (Fig. A2.1). All the flow patterns identified by FLOWTHRU can also occur on the plane of
symmetry through a circular lake.

lake

reglonal aquifer
flow direction

Figure A2.1 Three-dimensional flow near a circular flow-through lake
(after Townley 1983)

The geometry of the vertical section through the lake is shown in Figure A2.2. The length of the
lake in x direction is 2a. Aquifer thickness is B and L is the length of the capture and release
zones. The lateral hydraulic conductivity is Kx and vertical hydraulic conductivity is Kz.

The boundary conditions for a model of vertical section through a shallow lake are shown in
Figure A2.3. U+ is inflow and U- is outflow. U+ is the product of Kx and the groundwater
gradient of upstream side of the lake. Similarly U— is the product of Kx and groundwater
gradient of downstream side of the lake. R is recharge to the aquifer. Q is the net flux from the
water body to the aquifer for the vertical section. Q, net flux, is defined as rate of flow volume
per unit cross-section normal to the direction of flow. All three flow types, U+, U- and Q can be
positive or negative, with the positive direction defined in the figure.
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Y

- 0 ——

Figure A2.2 Idealised geometry for a model of a vertical section through a shallow lake (after
Townley 1983)

IR VoV v v

Figure A2.3 Boundary conditions for a model of vertical section through a shallow lake (after
Townley 1983)

The FLOWTHRU model was applied to Lake Nunijup to evaluate how seasonal variations in
groundwater level, recharge and evapotranspiration rates affect its water and salt balance.
Results of groundwater monitoring for 2001-02 were used to calculate U+ (inflow) and U—
(outflow). Lateral hydraulic conductivity (Kx) of 1.5 m/day and a recharge rate of 50 mm/year
were used for modelling. Aquifer thickness is assumed to be 25 m. Five different modelling
scenarios (Cases 1 to 5) were used to analyse lake and groundwater interactions. The results
and the parameters used are given in Table A2.1.

Case 1 (Fig. A2.4) and Case 2 (Fig. A2.5) represent lake—groundwater interactions during or
after a groundwater recharge event with special reference to late 2001 when groundwater levels
had actually been monitored. In Case 1, a recharge rate of 50 mm/year was applied.
Groundwater is flowing through the lake and in the process groundwater is discharging into the
lake on the upgradient side and lake water is seeping out on the downgradient side (Fig. A2.4).
In Case 1, groundwater discharge > seepage from lake, resulting in a net groundwater
discharge into the lake (Table A2.1). When there is no recharge (Case 2), groundwater
discharge < seepage from the lake and there is a net seepage of lake water into groundwater.
The groundwater flow regime changes from FT2 to FT1.
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Figure A2.4 Case 1: Groundwater flow pattern in December 2001

b [ T 77000 ¢
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Figure A2.5 Case 2. Groundwater flow pattern in December 2001 assuming no recharge to
groundwater

In Case 3, 4 and 5 (Figs A2.6, A2.7 & A2.8), the groundwater gradients of March 2002 are
used. So, these represent groundwater flow patterns during summer. In Case 3, no
evapotranspiration loss is assumed. In Case 4, the evapotranspiration loss from groundwater is
50 mm/year. In Case 5, a net recharge rate of 50 mm/year is used. In all three cases,
groundwater discharges into the lake. The rate of discharge into the lake increases with
increasing recharge to groundwater.

-

> (IS A

0.00240 Vertical exaggeration 4. 000 8. 000E-d

Figure A2.6 Case 3: Groundwater flow pattern in March 2002 assuming no evapotranspiration
loss from groundwater
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Figure A2.7 Case 4: Groundwater flow pattern in March 2002 assuming evapotranspiration loss
from groundwater

Sy —

Figure A2.8 Case 5: Groundwater flow pattern in March 2002 assuming a net groundwater
recharge

Table A2.1 Results of FLOWTHRU modelling for Cases 1to 5

Case U+ U- KX Kz R L Q Flow
(m/d) (m/d) (m/d) (m/d) (m/d) (m) (m?/d)* regime
1 0.0024 0.00375 15 0.094  0.00014 200 -0.0223 FT2
2 0.0024 0.00375 15 0.094 0 200 0.0337 FT1
3 0.0024 -0.0008 1.5 0.094 0 200 -0.08 D8
4 0.0024 -0.0008 1.5 0.094  -0.00014 200 ~0.0240 FT7
5 0.0024 -0.0008 1.5 0.094 0.00014 200 -0.136 D8

* Negative Q (net flux) values indicates groundwater discharging into lake

By increasing the stresses, such as in Case 4, on the groundwater system, for example, by a
high evapotranspiration rate, pumping or deep drainage, groundwater discharge into the lake
can be reduced. Similarly, increased recharge to groundwater (Case 5) increases groundwater
discharge into lake. From a management point of view, it will be better to use recharge
reduction strategies.
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When there is no net recharge (Case 2) and groundwater is flowing through (FT1) the lake, lake
water tends to seep into the lakebed. This is the only case where lake water seeps into the
groundwater system. In all the other flow regimes, FT2, D8 and FT 7, groundwater discharges
into the lake. The volume of groundwater discharge directly relates to the vertical groundwater
recharge.

Seepage and discharge distribution

Groundwater discharge and seepage from the lake in Case 1 are illustrated in Figure A2.9 and
are mostly restricted to the upstream and downstream edges of the lake.

Q00125

r—

Q (m?/d)

Wertical exaggeration 4000

-0.0018s

Figure A2.9 Case 1: Seepage and discharge distribution for flow-through regime

The groundwater discharge pattern for Case 3 is shown in Figure A2.10. There is groundwater
discharge at both edges of lake but more at the upgradient side of the lake.

CLOoo r —ﬂ

O (m2/d)

Wertical exaggeration A 000
-OLO01 s

Figure A2.10 Case 3: Distribution of groundwater discharge into the lake

Figures A2.9 and A2.10 show that, whatever the flow regime, groundwater is discharging at the
upgradient side of the lake and that, at the downgradient side (southern side of the lake),
depending on the flow regime, the movement of water may change from seepage of lake water
to groundwater discharge. In a particular year, seepage from the lake is the dominant process.

42 Department of Water



Salinity and Land Use Impacts Series Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26

Capture and release zones

Research by Townley et al. (1983) has led to a knowledge of the most important factors which
affect groundwater flow patterns near surface water bodies, particularly lakes and wetlands.
They show that for a flow-through lake the ratio of the length of a water body (2a) to the
thickness of an aquifer (B) i.e. 2a/B is one of the most important factors. The depth of the
capture zone depends mostly on 2a/B for isotropic aquifers. When 2a/B is about 1, the capture
zone is less than half the thickness of the aquifer. When 2a/B is 7 or more, the capture zone
extends to the base of the aquifer. The width of the capture zone of a large circular lake is
roughly twice the diameter of the lake for a shallow aquifer (where 2a/B > 8), or 1.5 times the
diameter for a deep aquifer (2a/B < 8).

For Lake Nunijup, 2a/B is about 32 so the capture zone extends to the base of the Tertiary
sediments aquifer. Laterally, the capture zone extends about 200 m from the northern side of
lake towards NU 6 in north-west direction passing Koonjie Road. The release zone extends
200 m from the southern side of Lake Nunijup. NU 2 is located within this release zone.
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Appendix 3 — Lake and LUCICAT models

The Lake Model is conceptualized as a simple bucket, with salt and water always well mixed.
That means when the lake overflows, the salinity of the outflow is identical to the salinity of the
lake. It is a simple spreadsheet-type volumetric salt and water balance model. The time-step is
monthly, but it can be run on a daily or yearly basis. The volume of water in the lake at a given
time is always known. From the lake water volume, the water level and surface area are
calculated from a look-up table of depth—surface area—volume relationship. A simple
representation of the Lake model is shown in Figure A3.1. Gains and losses of water from the
lake are:

e inflow

¢ rainfall on the lake surface

e evaporation from the lake surface
o streamflow from the lake

e seepage from the lake bottom.

The salt balance component is very similar to the water balance component of the model but
has an additional component of salt exchange on the soil surface during the
contraction/expansion of the lake water surface. When the lake contracts, the model leaves on
the dry lakebed some salt that dissolves again when lake expands (given as a parameter). Bari
(2004) details the numerical representation of the model.

Inflow
Rainfall Evaporation

Outflow

— |

Groundwater
level

Seepage loss/gain

Figure A3.1 Conceptual representation of the ake model

The LUCICAT model

This is a distributed conceptual catchment hydrology model. A large catchment is divided into
subcatchments and the fundamental model is applied to each subcatchment. Division is
generally according to the location of the hydrometric measuring stations, land use history and
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catchment morphology. The subcatchments are then arranged sequentially, defining the order
in which the computations are to be carried out.

In the fundamental model, the catchment is represented by the ‘open book’ approach

(Fig. A3.2). The model consists of three main components: (i) a two-layer unsaturated soil
module (upper and lower zone unsaturated store), (ii) a saturated subsurface groundwater
module, and (iii) a transient stream zone module. The upper zone unsaturated store is
represented by a VIC-type model (Wood et al. 1992; Zhao & Liu 1995), a simple probability
distribution function of the soil moisture capacity. The transient stream zone store represents
the groundwater-induced ‘saturated areas’ along the streamline. The flow chart of the different
components is shown in Fig. A3.2.
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Figure A3.2 Schematic of (a) a subcatchment, (b) the ‘open book’ representation, (c) the
hydrological processes (after Bari et al. 2001)

Hydrological processes of the fundamental model

Interception, transpiration by plants and evaporation from soil constitute evapotranspiration.
Some of the salt from rainfall is intercepted on plant leaves but is washed onto the soil surface
later. Transpiration is a function of the Leaf Area Index, relative root volume in the upper and
lower stores, moisture content and the potential energy. The transpiration module is described
in detail by Bari et al. (2003).
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Surface runoff is generated by the process of saturation excess only, as infiltration excess
overland flow is a rare event in Western Australia (Sharma et al. 1987). If part of the stream

zone is saturated by the presence of a permanent groundwater system, surface runoff (Q,, ) is
also generated from those areas. Interflow (Q, ), the contribution from the intermittent shallow

groundwater, is a function of the catchment-wide average lateral conductivity of the A-horizon,
and the water content of the Wet Store. Percolation (| ) is the amount of vertical water flow from
the A horizon to the deep unsaturated soil profile. Most of the percolated water is used and
transpired used by the deep-rooted trees.

Baseflow (Q, ) is defined as the contribution of the permanent groundwater to streamflow.

There is no baseflow unless the groundwater system connects to the stream bed. It is a function
of the catchment-average lateral conductivity of the aquifer, groundwater gradient and stream
length.

Flow routing

Once runoff is generated from a particular subcatchment (Fig. A3.3), it is transferred
downstream by a simplified hydraulic routing scheme. There is no surface routing component in
the model. The water and salt generated from each of the subcatchments reach the stream
channel without any time lag and then flow downstream based on open channel hydraulics.
Evaporation from the stream channel and loss to groundwater is allowed.

500000 510000 520000 530000 540000 550000

N
+ +

[] Subcatchments
a Stream Nodes
Stream lines '

6209000

6199000

6189000

+

617(?000

0

3000 6000 Metres

0000029

00006T9

0000819

0000LT9

T T T T T T
500000 510000 520000 530000 540000 550000

Figure A3.2 Subcatchments, nodes and channel network of the Upper Kent catchment
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Appendix 4 — LUCICAT model set-up

Rainfall and saltfall

The Kent Recovery catchment has a good coverage of rainfall records. The Bureau of
Meteorology started recording daily rainfall from about the 1900s. The Department of Water
also operates some pluviometers but, in most cases, monitoring only started in the early 1970s.
Twenty-two pluviometers, located within and around the catchment, were selected for creating
long-term (1910-2000) daily rainfall series for each subcatchment. The calculation of the daily
rainfall series at the centroid of each subcatchment was based on its distance from the nearest
three pluviometers (Dean & Snyder 1977). The long-term (1910-2000) average annual rainfall
of the upper catchment ranged from 830 mm in the west to 550 mm in the east (Fig. 6).

A limited amount of salt fall data was available for the catchment. The salt concentration of
rainfall at the centroid of each subcatchment was estimated from the average annual rainfall to
salt concentration relationship as described by Hingston and Gailitis (1976). The estimated salt
concentration was cross-checked against observed data where available. The salt
concentration of rainfall ranged from 10-6.5 mg/L TDS across the catchment.

Pan evaporation

As no pan evaporation data have been recorded within the upper catchment, annual pan
evaporation data at the centroid of each of the subcatchments were adopted from Luke et al.
(1988) and ranged from 1395 mm to 1510 mm. The annual data were then converted to daily
data using a simple harmonic function. The maximum daily pan evaporation (more than 12 mm)
is generally recorded in December and the minimum (in the order of 1.5 mm) generally in July.

The pan evaporation from each lake surface was taken as the value at the centroid of the
respective subcatchment.

Streamflow and salinity records

Continuous streamflow recording at the catchment’s two major gauging stations, Rocky Glen
and Styx Junction, began in 1979 and 1956 respectively. Until the 1970s, when continuous
conductivity recorders were installed, salinity samples were collected manually. In 1999, two
more gauging stations with continuous conductivity recorders (Perillup Road and Watterson
Farm) were installed (Fig. 6). Salinity samples were also collected from around the catchment
when the water resources survey was undertaken (Collins & Fowlie 1981). At present, salinity
samples are being collected from 11 locations around the upper catchment.

Salt storage

A number of studies have been undertaken in Western Australia to understand local and
regional distribution and accumulation of salt. A strong correlation of increasing soil salt storage
with decreasing rainfall has been well established for the south-west (Johnston et al. 1980;
Stokes et al. 1980; Tsykin & Slessar, 1985). In the 1970s, some measurements were
undertaken in the upper catchment to understand the vertical and areal distribution of soil salt
storage (Bari & Boyd 1992). In the 1990s, many samples were taken as a part of the regional
groundwater study (Bartle et al. 2000). The salt storage of the highly conductive topsoil
(generally 2—3 m thick) is very low all over the catchment, and generally in the order of

0.35 kg/m>. Most of the salt is stored in the unsaturated soil profile. The groundwater salinity
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and long-term average rainfall of the sites were found to be well correlated. There is also a
reasonably strong relationship between the groundwater salinity and the salt storage

(Fig. A4.1). Based on these two relationships the salt content of each subcatchment was
calculated. The average salt storage ranges from 2.2 kg/m? in the western high-rainfall areas to
4.6 kg/m? in the low-rainfall areas of the upper catchment.

y =0.1119x + 1.471 .
R? = 0.3894

~

[op]

(6]
*
*

Mean salt content (kg/m °)
~
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Groundwater salinity (mS/cm)

Figure A4.1 Relationship between mean soil salt content and groundwater salinity

Land-use history

The land-use history of the upper catchment is not well documented. When clearing control
legislation was enacted in 1978, 68% of the catchment area had been cleared for agricultural
development (Fig. 6). The proportion of the cleared area of each subcatchment was adopted
from Dixon et al. (1998). As the progress of clearing is not known, a single clearing trend, as
recorded by Collins and Fowlie (1981) was used for all subcatchments. The land use history for
each subcatchment for the whole period of simulation (1968-2001) was consolidated as a ‘land
use history’ file. If part of a subcatchment was cleared, a concept of land use fractions was used
to reflect the changes. Since the mid-1990s, private companies have planted bluegums on a
significant proportion of the cleared areas in the high rainfall portion of the catchment. These
changes are yet to be incorporated into the model.

Groundwater system

In the High Rainfall Zone, groundwater in the south-west of Western Australia is well-connected
to the stream channel, whereas in the Low Rainfall Zone it lies about 15-20 m below the stream
channel. An initial groundwater level was developed for each of the forested subcatchments
based on records and regional trends. Estimation of the initial groundwater level beneath the
cleared areas was difficult though there were some studies of groundwater level trends
particularly in the cleared areas of the upper catchment (Bari & Boyd 1993; McFarlane et al.
1994, Bartle et al. 2000) and experimental evidence elsewhere in the south-west showing the
rate of change in groundwater level following land use changes (Bari 1998; Mauger et al. 2001).
Based on those data and land use history, initial groundwater levels beneath the cleared areas
were estimated and incorporated into the model.

48 Department of Water



Salinity and Land Use Impacts Series Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26

Subcatchment attributes

The upper catchment was divided into 58 subcatchments ranging in area from 2.8 to 48 km?
(Fig. 6). The average subcatchment elevation, stream length, average surface slope, soil type
and total profile thickness were determined from digital data through the use of Geographic
Information System.

Lake characteristics

Lake depth—volume—surface area information for all three lakes is available from the DoW
south-coast region, Albany (Table A4.1).

The characteristics of the outflow channel, the bed slope, roughness and depth-width are
required in the Lake Model. At present no data available, but the best-estimated data has been
incorporated into the model. No data is available on lake-bed conductance or the underlying
aquifer properties.

Table A4.1 Lake characteristics

Lake Overflow depth Surface area Volume Median salinity
(m) (km?) (GL) (mg/L TDS)
Nunijup 3.9 0.79 2.32 7 750
Carabundup 4.0 1.85 5.17 15 000
Poorrarecup 3.0 1.99 4.98 10 600

Initial conditions

The inflow and salt load, predicted by the LUCICAT model, were used to calibrate the Lake
model, starting from January 1973. At the beginning of calibration, the Lake Model parameters
for all three lakes were kept similar to the application of the model to Lake Toolibin and Lake
Dumbleyung (Bari & Ruprecht 2003; Bari 2004). Initial water volumes in all three lakes were
assumed to be 1 GL.
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Appendix 5 — LUCICAT model calibration

The principal objective in applying this model was to represent the salinity generation process of
the upper catchment on a daily time-step. The model was applied for the period 1968-2001.
The stream nodes, channel network and other subcatchment attributes are shown in Fig. A3.3.

LUCICAT needs minimal calibration (Bari et al. 2003). Most of the parameters remain ‘fixed’
once calibrated in a catchment, with exception of 7 physically meaningful parameters which, at
times, vary between catchments. The range of parameter values and their ranking in terms of
sensitivity are shown in Table A5.1. The most sensitive parameter (ia), the relationship
between the catchment-wide lateral conductivity of the topsoil and moisture content, ranged
from 2.15 to 3.15 (Table A5.1). The second most sensitive parameter was the vertical
conductivity of the upper layer ( pa ), which controls the percolation to the deep unsaturated
profile and ranged between 15.29 and 27.185 mm per day” for other applications (Bari et al.
2003). The other ‘variable’ parameters are the topsoil depth (d,,) and its spatial distribution of

water-holding capacity (a,b), and the average lateral conductivity (K, ) of the aquifer
(Table A5.1).

Table A5.1 The ‘variable’ parameter set for the upper catchment

Sensitivity ~ Most likely Collie River

Parameter Range Upper catchment
: ranking value catchment PP
a 0.256-0.56 3 0.256 0.2 0.15
b 0.123-0.625 6 0.256 0.2 0.15
d 1900-2500 4 2500 1600-2500 1550-1950
ia 2.15-3.15 1 2.3 2.5 2.15
KVu 15.29-27.185 2 27.185 27.185 27.185
KII 400-1500 5 500 300 1800
CLI 0.0042-0.0263 7 0.0163 0.0063 0.0063

This model was successfully applied to the Collie River catchment (Bari et al. 2003) and, at first,
the identical parameter set was adopted for the whole upper catchment (Table A5.1), without
any calibration. The observed and predicted annual streamflows at the Rocky Glen gauging
station were comparable but predictions of the annual salinities and salt loads were poor for all
subcatchments where there had been significant land use changes, mainly due to the poor
representation of the salt storage in the stream zone.

The next step was to adjust some of the parameters to match predicted and observed daily
streamflows. The thickness of the topsoil is a sensitive parameter and the literature reveals that
it is not uniform across the catchment (Mauger et al. 2001; Bari et al. 2003). After the
adjustment, the mean topsoil depth (d ) over the catchment ranged from 1550-1950 mm
(Table A5.1). Adjustment of some of the other four sensitive parameters (a,b,ia, pa) to match
predicted and observed daily flows followed. The ‘final’ values of these parameters are not
significantly different from the initial adopted values (Table A5.1).

Calibration of the daily stream salinity and salt load followed. As the initial salt storage value of
the stream zone could not be estimated from observed data, the model was run a few times and

50 Department of Water



Salinity and Land Use Impacts Series Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26

the final values of the stream zone salt store used as the initial values for subsequent runs. At
this stage, the lateral hydraulic conductivity of the deep aquifer (K, ) and the other parameter

(C, ), which controls the stability of the salts stored in the topsoil, were also adjusted to obtain

the most satisfactory matchings of the observed and predicted flow, salinity, salt load and
groundwater trend. The ‘final’ parameter set is given in Table A5.1.

The following sections describe the different components of the modelling results.

Groundwater system

Groundwater beneath native forest in the south-west of Western Australia has either been
stable over the last 30 years or, in some areas, has shown a slight downward trend — attributed
to the lower than long-term average (1900—70) annual mean rainfall (Schofield & Ruprecht
1989). LUCICAT, representing the groundwater level trends beneath the forested and cleared
subcatchments within the upper catchment (Fig. 35), shows that the groundwater levels
beneath forested portions of subcatchments 24 and 52 remained practically stable during the
whole period of simulation (Fig. A5.1).
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Figure A5.1 Trends of the conceptual groundwater system in selected subcatchments

After the clearing controls of the 1970s, groundwater levels under cleared areas of all the
Recovery Catchments kept rising until a new stability was achieved by the mid 1990s (Bari
1998; Mauger 2001). Rising groundwater was also observed in the upper catchment,
particularly in the cleared areas (Bari & Boyd 1993; McFarlane et al. 1994; Bartle et al. 2000; De
Silva 2003). The modelled groundwater level stabilised by the late 1990s (Fig. A5.1). For
example, the groundwater level had already reached the stream bed in subcatchment 34 where
there was no significant reforestation. The trends of the conceptual groundwater levels beneath
other subcatchments were very similar to the ones presented in Figure A5.1.
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Annual streamflow, salinity and load

For the whole simulation period, observed and predicted annual streamflows showed good
agreement (Fig. A5.2a). The model slightly under-predicted the highest flow on record (1988),
generally predicted the low-flow years quite well and overall obtained a very high correlation
coefficient (R?= 0.92). The observed and predicted total streamflows were 579 mm and 625 mm
respectively, resulting in an overprediction of only 7%.

For the whole period of study, the modelled and observed annual flow-weighted salinities and
salt loads matched reasonably (Figs A5.2b & c). The predicted salinity for 1987 was 5915 mg/L
when one of the highest stream salinities (5830 mg/L TDS) was observed. The model slightly
overpredicted the annual load some years between 1979 and 1987. During the period 1979—
2001, total observed and predicted salt discharges from the catchment were 17 345 kg/ha and
17 480 kg/ha respectively, representing a 1% overprediction (Fig. A5.2b).

Monthly flow and salt load

The relationships between observed and predicted monthly streamflow and salt load for Rocky
Glen gauging station are shown in Figure A5.3. A constrained linear relationship between the
monthly observed and modelled streamflow gives a correlation coefficient (R?) of 0.91

(Fig. A5.3a). Similar monthly relationships were also obtained by Sivapalan et al. (1996) when
they applied the LASCAM model at Wights and Salmon catchments. The model overpredicts
some low flows, particularly those less than 5 mm/month (Figure A5.3a).

Similarly, a satisfactory relationship (R?=0.92) between the observed and predicted monthly salt
load was observed (Fig. A5.3b). Monthly salt loads ranged from 0 to 425 kg/ha. The model
mostly overpredicted salt loads during low-flow periods (Fig. A5.3b).

Daily streamflow, salinity and load

Daily simulated and observed streamflow hydrographs matched reasonably well most years.
The trend, magnitude and duration of observed and simulated daily flow, salinity and salt loads
of 1987 and 1990 are typical for all other years.

In the average-flow year of 1990, the spatial average rainfall of the upper catchment was

620 mm. Daily streamflow was dominated by baseflow component during October to May

(Fig. A5.4b). Daily stream salinity was from 5000 to 6000 mg/L TDS. The model predicted the
flow generation processes very well, but the predicted daily salinity was, at times, less than that
observed (Fig. A5.4b). Daily observed stream salinity rose to 10 000 mg/L TDS during April—
June, when the upper part of the catchment began to flow and salts left on the soil surface by
evaporated groundwater were flushed into streams. The model slightly underpredicted the daily
salinity (Fig. A5.4b), but matched the observed salt load (Fig. A5.4c). The model also slightly
underpredicted the maximum daily (peak) flow of the year. The predicted and observed
maximum flows were 2.84 mm and 2.75 mm respectively (Fig. A5.4a). The modelled and
observed salinities were reasonably similar. The model also slightly overpredicted some of the
peak salt loads (Fig. A5.4c).
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Figure A5.3 Relationship between monthly modelled and observed (a) streamflow and (b) salt
load at Rocky Glen

The year 1987 was one of the driest during the period 1979-2001 (Fig. A5.2a). There was no
streamflow recorded at the Rocky Glen gauging station during the dry months January to April
(Fig. A5.5a). When streamflow started in April, daily predicted flow was slightly lower and daily
predicted salinity was much higher than observed. During the high-rainfall months (July to
October), the model simulated interflow and baseflow well, but overpredicted some of the peak
flow components (Fig. A5.5a). During October to December, the simulated daily stream salinity
was slightly higher than the observed values (Fig. A5.5b). The observed and simulated stream
salt loads were similar, except for a few peaks, which were overpredicted by the model

(Fig. A5.5c).

54 Department of Water




Salinity and Land Use Impacts Series Hydrology of Lakes Nunijup, Poorrarecup and Carabundup SLUI 26

— Actual flow (mm) (a)
—— Modelled flow (mm)

N
al
I
T

N
|
t

[N
I
T

Streamflow (mm)
I
(8]

o
o
I
t

0 A A N A A DLA‘LA}\AD— \ A

01/01/1990 20/02/1990 11/04/1990 31/05/1990 20/07/1990 08/09/1990 28/10/1990 17/12/1990

14000 Actual Salinity (mg/L TDS)
Modelled Salinity(mg/L TDS)

(b)

12000

10000 +

8000 1 i

6000 + d A M

4000 +

Stream salinity (mg/L TSS)

2000 +

0 f f f f f f f
01/01/1990 20/02/1990 11/04/1990 31/05/1990 20/07/1990 08/09/1990 28/10/1990 17/12/1990

40

—— TSS Load (kg/ha)
35 11 Model Load (kg/ha) (©

30 +

25 +

20 +

15 +

10 +

Stream salt load (kg/ha)

51

olena A Dy ; ;

01/01/1990 20/02/1990 11/04/1990 31/05/1990 20/07/1990 08/09/1990 28/10/1990 17/12/1990

Figure A5.4 Daily modelled and observed (a) streamflow (b) salinity and (c) salt load at Rocky
Glen (1990)
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Appendix 6 — Salt and water balance
components of the lakes
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Figure A6.1 Salt and water balance components of Lake Nunijup
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Figure A6.2 Salt and water balance components of Lake Carabundup
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Figure A6.3 Salt and water balance components of Lake Poorrarecup
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