

GROUNDWATER INFORMATION FOR MANAGEMENT OF THE ELLEN BROOK, BROCKMAN RIVER AND UPPER CANNING SOUTHERN WUNGONG CATCHMENTS

Water and Rivers Commission

GROUNDWATER INFORMATION FOR MANAGEMENT OF THE ELLEN BROOK, BROCKMAN RIVER AND UPPER CANNING SOUTHERN WUNGONG CATCHMENTS

by

R. A. Smith, R. Shams, M. G. Smith, and A. M. Waterhouse Resource Science Division Water and Rivers Commission

> WATER AND RIVERS COMMISSION SALINITY AND LAND USE IMPACTS SERIES REPORT NO. SLUI 12 SEPTEMBER 2002

Acknowledgments

The authors acknowledge help and advice from;

The Advisory Committee (below) to the Swan Hydrogeological Resource Base and Catchment Interpretation Project

Department	Representative
Agriculture Western Australia Conservation and Land Management	Gerry Parlevliet Rob Towers
Community	Peter Murray (Chair)
CSIRO	Dr John Adeney
Edith Cowan University	Dr Ray Froend
Environmental Protection Authority	Wes Horwood, Jane Taylor
Local Government Authority	Mick McCarthy, Veronica Oma
Ministry for Planning	David Nunn, Marie Ward, Alan Carman-Brown
Swan Catchment Centre	Peter Nash
Swan River Trust	Dr Tom Rose, Declan Morgan, Adrian Tomlinson

Mr Ken Angel (Agriculture Western Australia),

Mr Robert Panasiewicz (formerly Water and Rivers Commission), and Mr Syl Kubicki (formerly Water and Rivers Commission).

Recommended Reference

The recommended reference for this report is:

SMITH, R. A., SHAMS, R., SMITH M. G., and WATERHOUSE, A. M., 2002, Groundwater information for management of the Ellen Brook, Brockman River and Upper Canning Southern Wungong catchments: Western Australia, Water and Rivers Commission, Salinity and Land Use Impacts Series Report No. SLUI 12, 21 p.

We welcome your feedback

A publication feedback form can be found at the back of this publication, or online at www.wrc.wa.gov.au/public/feedback/

ISBN 1-920687-81-5 ISSN 1447-7394

September, 2002

Cover photograph:

Ellen Brook by

Rezina Shams

Foreword

The Swan Hydrogeological Resource Base and Catchment Interpretation project was a Natural Heritage Trust (NHT) and Water and Rivers Commission (WRC) funded project (NHT 973705). The study areas were three priority catchments of the Swan-Canning rivers—the Ellen Brook, Brockman River and the combined Upper Canning Southern Wungong catchments.

The following were the main objectives of the study:

- To liaise with the Swan Working Group and catchment groups to determine issues, needs and appropriate products.
- To provide baseline groundwater information essential for the catchment groups to implement management plans.
- To compile maps of hydrogeological information at a scale appropriate to the decision-making processes of catchment managers.
- To transfer expertise into the priority sub-catchments by training, publications and advice in interpretation.

This report comprises a brief overview of the areas and management guidelines from the perspective of the groundwater issues. More detailed information can be found in the following project reports, posters and CD-ROM.

Reports

Groundwater information and management options for the Brockman River Catchment SLUI 2 Hydrogeological information for management planning in the Ellen Brook Catchment SLUI 11 Groundwater information for management in the Upper Canning Southern Wungong Catchment SLUI 14

Posters

Managing Nutrient Movement into Ellen Brook Geology of Ellen Brook Hydrogeology of Ellen Brook Salt affected land? Yes! It's a groundwater problem! Brockman River Catchment

CD-ROM*

Groundwater information and Management Zones for the Ellen Brook, Brockman River and combined Upper Canning and Southern Rivers and Wungong Brook catchments.

*The data package on the CD-ROM contains the following themes in GIS format: surface water catchments and their subcatchments; hydrogeological zones; water monitoring sites for groundwater and surface water; management boundaries; regional soil surveys; topographic contours; roads; Local Government boundaries; and general climatic data.

Contents

Summary	1
1 Ellen Brook catchment	2
1.1 Management guidelines	3
2 Brockman River catchment	9
2.1 Management guidelines	10
3 Upper Canning Southern Wungong catchment	14
3.1 Management guidelines	15

Figures

1.	Catchment locations	. 1
2.	Location (Ellen Brook)	. 5
3.	Geomorphology and topography (Ellen Brook)	. 6
4.	Hydrogeology (Ellen Brook)	. 7
5.	Environmental Management Units (Ellen Brook)	. 8
6.	Groundwater zones (Brockman River)	12
7.	Management zones (Brockman River)	13
8.	Upper Canning Southern Wungong catchment location	18
9.	Simplified geology (Upper Canning Southern Wungong)	19
10.	Slope of land derived from Digital Elevation Model (Upper Canning Southern Wungong)	20

Tables

1a.	Management options to reduce nutrient export (Ellen Brook)	. 3
1b.	Management options to reduce inundation (Ellen Brook)	. 3
1c.	Management options to counter dry land salinisation (Ellen Brook)	. 4
1d.	Management options to control water erosion (Ellen Brook)	. 4
2a.	Summary of management options for limited groundwater resource (Brockman River)	. 6
2b.	Summary of management options for dryland salinisation (Brockman River)	. 7
За.	Management options to control erosion by water (Upper Canning Southern Wungong)	. 9
3b.	Management options to control inundation and waterlogging (Upper Canning Southern Wungong)	. 9
3c.	Management options to reduce nutrient export (Upper Canning Southen Wungong)	10
3d.	Management options to counter dryland salinisation (Upper Canning Southern Wungong)	11
3e.	Management options to limit point source contamination of groundwater (Upper Canning Southern Wungong)	11

Summary

In summarizing the reports listed in the Foreword, this report provides the recommended groundwater-related management actions for the three priority subcatchments of the Swan-Canning rivers.

The Ellen Brook, Brockman River and Upper Canning Southern Wungong catchments (Fig. 1) are three near urban subcatchments of the Swan and Canning rivers experiencing significant land and water degradation as a consequence of extensive land use changes and development.

Erosion, nutrient export and inundation are the significant land and water degradation issues for both the Ellen Brook and Upper Canning Southern Wungong catchments with dryland salinisation a growing problem in all three catchments. Contamination of groundwater by salt or other contaminants is a problem for all three catchments.

The Darling Scarp divides these catchments between the Swan Coastal Plain and the Darling Plateau. Understanding these features and the associated drainage and geology explains much about the groundwater-related issues addressed in this report.

Keywords: Yilgarn Southwest Province, Perth Basin, hydrogeology, catchment water quality, land use planning, Armadale, Bindoon, Bullsbrook, Kelmscott, Muchea, SH5014, SI5002

1 Ellen Brook catchment

The Ellen Brook catchment (Fig. 2) on the outskirts of Perth is in transition from rural to intense horticultural, light industrial and residential land use. Nutrient entry to surface water, inundation of valley flats, salinisation on the plateaus, and erosion of banks and slopes are important groundwater-related issues for management. This study particularly addresses the role of groundwater in nutrient transport to the Ellen Brook and thence to the Swan-Canning estuary.

The clearing and land use history, together with the differing groundwater behaviour in the three distinct geomorphic zones (Swan Coastal Plain, Dandaragan Plateau and Darling Plateau, Fig. 3), have been instrumental in the emergence of the current issues for management and planning. An appreciation of the varied hydrogeological conditions (Fig. 4) is important to achieving good management practice and addressing the environmental issues in the Ellen Brook catchment.

The Environmental Protection Policy (EPP) for the Swan and Canning Rivers recognises that the receiving waters of the Swan and Canning estuarine system provide important economic, aesthetic, recreational, commercial and environmental resources for the State. The Ellen Brook catchment is recognised also for economic and heritage (Aboriginal) significance and environmental values. Four land and water degradation issues, whose management options require groundwater information, are described below and shown in Table 1(a to d).

The Ellen Brook catchment is one of the highest contributors of the **nutrients**, nitrogen and phosphorus, to the Swan-Canning estuarine system. Very high levels of phosphorus and moderate levels of nitrogen are consistently found in the Ellen Brook. Fertilisers, animal wastes and soil-bound nutrients from current land use activities and the impacts of past management within the catchment are the major source of nutrients into the Ellen Brook via surface and groundwater.

The flat plains of the catchment, concentrated on the north-south drainage line, are prone to **inundation** in the winter either through a seasonally high watertable or waterlogging on surfaces with low permeability. These areas suffer loss of production, mobilisation of nutrients and seasonal salinity.

Salinisation is an emerging issue on the Dandaragan and Darling Plateaus. This groundwater issue is widespread throughout the state, especially in the Southwest Land Division.

Erosion is the result of many geologic, geomorphic, hydrogeologic, ecologic, social and other factors in combination. It is a major problem along the scarp face, steep slopes of the plateau and the banks of waterways, but firebreaks, roads and tracks are also of concern. Stream bank erosion and sedimentation are major problems where fringing vegetation is absent or damaged through unrestricted stock access. Stream bank erosion and associated sedimentation is becoming a problem in some of the streams flowing from the Darling Scarp.

Report SLUI 11 applies what we know about the hydrogeology of the Ellen Brook catchment to what it means for management and planning. Table 1(a to d) on the next page duplicates the management actions described in that report. The priority areas for recommended management actions are the environmental management units (EMUs, Fig. 5) defined in a management plan for the Ellen Brook catchment.

1.1 Management guidelines

Groundwater	Priority areas	Recommended	Examples/actions
management	(EMUs*)	actions	
objective			
Reduce		Manage	Commercial farm forestry - Maritime pine, Eucalyptus,
groundwater	SC2	groundwater	Oil mallees, Acacias, and other tree species
recharge		recharge	Management of native vegetation and revegetation
_			Perennial pasture
Minimise	SC1, SC2 and DN1	Best	Fertiliser & irrigation management
nutrients		management	Improve land practice
leaching into		practice	Application of soil amendment to low phosphorus-
groundwater			retaining soils
Reduce	SC2 and SC3	Surface water	Stream lining to trap and uptake nutrients
overland runoff		control	Planting, graded bank to reduce overland flow
Minimise	SC3, DN1, DN2 and	Control erosion	Planting to filter sediments
sediment	DR11		Planting, fencing, stock control to reduce erosion
entry to			Perennial pastures
drainage			

Table 1a. Management options to reduce nutrient export

*EMUs are Environmental Management Units.

Table 1b.	Management	options	to reduce	inundation
-----------	------------	---------	-----------	------------

Groundwater	Priority areas	Recommended	Examples/actions
management	(EMUs)	actions	
objective			
Lower		Manage	Commercial farm forestry, Maritime pine, Eucalyptus, Oil
groundwater	SC2	groundwater	mallees, Acacias, and other tree species
level		recharge	Management of native vegetation and revegetation
			Engineering practices: surface water management via
			shallow interceptor banks or grade banks
	SC3, DN1 and DN2	Reduce	Planting species tolerant to water
		waterlogging	

Groundwater	Priority areas	Recommended	Examples/actions
management	(EMUs)	actions	Examples/actions
ohiective	(Emos)	uenons	
Reduce		Manage	Commercial farm forestry Maritime pine Eucalyptus
groundwater	Subcatchments	groundwater	Oil mallees Acacias and other tree species
recharge	draining the Darling	recharge	Management of native vegetation and revegetation
8-	Plateau and southern	8-	Engineering practices: surface water management via
	section of the		shallow interceptor banks or grade banks
Lower		Manage the	Reducing groundwater recharge as above
groundwater	Dandaragan Plateau	groundwater	Engineering options: deep drains (> 1.5m deep), not
level	(DR11, SC3 and	recharge and	effective in deep clays; groundwater pumping; relief
	DN1).	engineering	wells or siphons where depth to groundwater is $< 4 \text{ m}$
		options	and land surface has slope greater than $\sim 3\%$
Evaluate	Localised dryland	Monitoring	Monitoring program either site specific or at catchment
remedial	salinisation is		level
actions	sumsuion is		
Public	evident on the Swan	Increased	Public information on catchment targets and why they
support of	Coastal Plain where	public	were selected
management	shallow water table	education and	Education on the causes and management of salinisation
actions	is coincides with	awareness	Reinforce the key message that the whole community
	clay-dominated		benefits from reducing salinity
	and imanta		Encourage active subcatchment groups and community
	searments.		participation
			Encourage tours of remedial sites, both positive and
			negative

Table 1c. Management options to counter dryland salinisation

Table 1d. Management options to control water erosion

Groundwater management objective	Priority areas (EMUs)	Recommended actions	Examples/actions
Stabilise slope	DN1, DN2 and DR11	Prevent erosion	Planting high water using trees Utilising appropriate land/farming practice Engineering practices: surface water management via shallow interceptor banks or grade banks
Stabilise banks	All (except SC1which has none)	Prevent erosion	Riparian vegetation Fencing of stream lines Reduce stock access to stream line

2 Brockman River catchment

The limited good quality groundwater and the development of dryland salinisation are the main groundwater-related issues in the Brockman River catchment. Options for groundwater management include efficient use and protection of existing groundwater supplies through industry awareness, best practice and public awareness and education. Developing dryland salinisation requires groundwater management to reduce recharge or lower the groundwater levels.

There is widespread landholder concern in the Brockman River catchment over emerging dryland salinisation from rising groundwater levels, both of which are reducing agricultural productivity and lowering economic returns. Businesses (such as tourism) that rely on attractions or the physical infrastructure (roads or buildings) are also likely to be adversely affected by these issues. Rising groundwater levels need to be tackled at a catchment level and will require significant community cooperation.

Four groundwater zones are identified (Fig. 6). The regional aquifer in the Dandaragan Plateau is managed as part of the Gingin Groundwater Management Area. The surficial aquifers and the western fractured-rock aquifer zone are both important for private groundwater abstraction in the Brockman Valley. While additional localised groundwater resources are probably available in these two zones, it is unlikely that they will yield large supplies of good quality groundwater. Rising groundwater however has the potential to contaminate these already limited low salinity resources. Groundwater from the eastern fractured-rock aquifer zone is generally suitable for limited irrigation and livestock.

60% of salt discharged by the Brockman River into the Avon River originates in the catchment upstream of Tanamerah monitoring station (S616006, Fig. 6). This north-to-south variation is due to the difference in land use history, geology and rainfall.

Groundwater resources are limited and localised. Developmental and economic demands of the catchment will in places conflict with optimal groundwater management. Managers need to balance the environmental needs and development demands within the catchment.

The framework for groundwater management options used in report SLUI 2 and here comes from the Environmental Planning Precincts of Evangelisti & Associates. Figure 7 shows these Environmental Planning Precincts and Table 2(a and b) provides a range of management actions.

2.1 Management guidelines

Groundwater	Priority areas	Recommended	Examples/actions
management objective		actions	
Use groundwater	A) Environmental Planning	Efficient use of	Ensure that appropriate land use activities are
efficiently.	Precincts DR2, DR3,	groundwater	carried out within the Brockman River
	DR4, DR5, DR6 and		catchment.
	DR9 which are		Encourage the use of appropriate quality water
	predominantly within		for industrial and agricultural activities;
	the surficial aquifer zone		1.e.do not use low salinity/fresh
	and fractured-rock		groundwater if brackish groundwater is
	aquiter zone A.		suitable.
	B) The regional aquifer		
	system located on the		
	Dandaragan Plateau		
Protect existing	As above	Industry	Identify groundwater issues related to specific
groundwater sources		awareness of	industries, such as nutrient discharge
0		best	associated with piggeries; fuel leakage
		management	from fuel storage tanks (commercial and
		practices	private); and contamination from waste
			disposal sites.
			Ensure that industry is employing best
			management practices and monitor issues
			related to groundwater if deemed
			necessary.
			and field days
			Ensure correct disposal of solid and liquid
			waste, and waste water from existing light
			industry, agricultural and horticultural
			activities.
		Public	Education regarding the storage, usage and
		awareness and	disposal of chemicals, fertilisers, pesticides
		education	and herbicides at both the household and
			business levels.
			Encourage the use of native plants in the
			gardens to reduce the use of chemicals like
			Native plants also require minimal
			watering in summer, thus preserving
			existing groundwater sumplies
			Education on the interdependence of rivers
			and groundwater, to illustrate the relevance
			of groundwater quality to a healthy river
			system.

Table 2a. Summary of management options for limited groundwater resource

Groundwater	Priority areas	Recommended	Examples/actions
management objective	, i i i i i i i i i i i i i i i i i i i	actions	1
Reduce groundwater	Subcatchments within	Manage	Commercial farm forestry, Maritime pine,
recharge	Environmental Planning	groundwater	Eucalyptus, Oil mallees, Acacias, and
	Precincts DR7, DR8, DR9	recharge	other tree species.
	and DR13. Rising	0	Management of native vegetation and
	groundwater levels and		revegetation.
	salinisation are evident		Engineering practices: surface-water
	throughout the catchment.		management via shallow interceptor banks
	-		or grade banks.
Lower groundwater	As above	Manage the	Reducing groundwater recharge as above.
level		groundwater	Engineering options: deep drains (> 1.5m
		recharge and	deep), not effective in deep clays;
		engineering	groundwater pumping; relief wells or
		options	siphons where depth to groundwater is less
			than 4 m and land surface has slope greater
			than $\sim 3\%$.
Evaluate remedial	As above	Monitoring	Monitoring program either site specific or at
actions			catchment level.
Public support of	As above	Increased public	Public information on catchment targets and
management actions		education and	why they were selected.
		awareness	Education on the causes and management of
			salinisation.
			Reinforce the key message that the whole
			community benefits from reducing
			salinity.
			Encourage active subcatchment groups and
			community participation.
			Encourage tours of remedial sites, both
			positive and negative.

Table 2b.	Summary of manag	ement options for	drvland salinisation
1 4010 201	Summary or manag	ement options for	ai yiuna sunnsution

3 Upper Canning Southern Wungong catchment

The Upper Canning Southern Wungong catchment is a near-urban composite catchment (Fig. 8) undergoing major land use changes and development. The major changes since European settlement have already resulted in erosion, waterlogging, water quality degradation, dryland salinisation and contamination of groundwater resources.

The catchment has a diverse geology and this has a major influence on the occurrence and vulnerability of water to land use practices. Consequently, the occurrence and quality of groundwater is most highly variable from east to west across the main geologic changes (Fig. 9). Furthermore, fresh groundwater is localised and limited in the eastern half of the catchment, while large groundwater resources are present in the western third of the area.

Erosion is significant mainly where the surface is clayey and the landscape steep, particularly the valleys and scarps of the Darling Plateau (Fig. 10). There is major erosion in cleared areas, especially along streamlines where there is stock access and land development.

Shallow watertables in the clayey areas in the east of the Swan Coastal Plain and in the Darling Plateau can contribute to waterlogging and inundation of low-lying poorly drained land.

Groundwater in sandy surficial sediments varies in quality, may contain isolated very high nutrient levels at the watertable or at depth, and transports nutrients in solution from the western part of the catchment into the Southern River.

Nutrients enter the Upper Canning and Southern rivers bound to eroding soil particles especially where ridges, slopes and drainage lines are poorly vegetated and used by stock and humans.

Land clearing on the Darling Plateau is the cause of localised mobilisation of salt stored in the soil profile, leading to the discharge of saline groundwater and land salinisation.

Investigations of groundwater contamination from land use, particularly landfill and liquid waste disposal, are well documented.

Report SLUI 14 describes the current status and processes occurring in the catchment, gives guidelines for management of future development, and discusses the impact on land and water quality, in particular groundwater. The suggested range of management actions is given in Table 3(a to e).

3.1 Management guidelines

Table 3a. Management options to control erosion by water

Groundwater	Priority areas by	Recommended	Examples/actions
management	subcatchments	actions	
objective			
Limit shallow	Areas with steep	Adequate	Restrict grazing
watertables	slopes in parts of 3,	drainage	Plant high water using trees
	4, 5, 6, 10, 11, 12,		Use appropriate land/farming practice
	13, 14, 15, 24, 25,		Engineering practices: surface water management via
	26, 27.		shallow interceptor banks or grade banks
Limit	Areas with steep	Stabilise slopes	Restrict grazing
groundwater	slopes in parts of 3,		Plant high water using trees
discharge on	4, 5, 6, 10, 11, 12,		Use appropriate land/farming practice
steep slopes	13, 14, 15, 24, 25,		Engineering practices: surface water management via
	26, 27.		shallow interceptor banks or grade banks
Limit	Stream banks, scarps	Stabilise banks	Increase or improve riparian vegetation
groundwater	and major rivers 6, 9,		Fence stream lines
discharge onto	13, 14, 15, 16, 17,		Reduce stock access to stream line
unprotected	18, 21, 22, 24, 25,		
stream banks	26, 27,		

(The numbers refer to subcatchments named on Figure 8)

Tuble est multiplicate options to control multiplication and multiplications	Table 3b.	Management	options to	control	inundation	and v	vaterlog	ging	J
--	-----------	------------	------------	---------	------------	-------	----------	------	---

Groundwater	Priority areas by	Recommended	Examples/actions
management	subcatchments	actions	
objective			
Limit rising	Flat poorly drained	Control	Plant high water-use trees
shallow	clayey ground,	watertable rise	Adequate urban drainage
watertable	especially along and	to keep	Commercial farm forestry, Maritime pine, Eucalyptus,
	east of Southern	watertable	Oil mallees, Acacias, and other tree species
Limit	River, in 6, 8, 9, 14,	below surface	Management of native vegetation and revegetation
waterlogging	15, 16, 17, 18, 19,		Engineering practices: surface water management via
	20, 21, 22, 23, 24, 25		shallow interceptor banks or grade banks
Limit shallow	Areas of laterite	Use or drain	Maintain or restore healthy high water use vegetation, eg
"perched"	weathering profiles,	shallow	forestry preferable to pasture
watertable	in parts of 1, 2, 3, 4,	"perched"	Planting species tolerant to waterlogging
	5, 6, 7, 10, 11, 12,	groundwater	
	13, 14, 15, 24, 25,		
	26, 27		

Table 3c. Management options to reduce nutrient export

Groundwater	Priority areas by	Recommended	Examples/actions
management	subcatchments	actions	
objective			
Limit near	Areas with thin	Reduce	Drainage
surface	sands over shallow	saturation in	High water use vegetation
groundwater	clays, in 8, 9, 14, 15,	winter.	Commercial farm forestry - Maritime pine, Eucalyptus,
flow	16, 17, 18, 19, 20,	Keep	Oil mallees, Acacias, and other tree species
(in winter)	21, 22, 23.	watertable out	Management of native vegetation and revegetation
	Minor areas in 25,	of sandy layer	Perennial pasture
	26, 27.	Intercept	Vegetation belts and wetlands and swales
		shallow flow	
Manage	Where there is a	Minimise	Fertiliser & irrigation management
throughflow	sandy layer and	leaching to	Improve land practice
of	where there is	watertable	Application of soil amendment to low phosphorus-
groundwater	hydraulic connection		retaining soils
	with river, in 8, 9,		
	14, 15, 16, 17, 18,		
	19, 20, 21, 22, 23.		
	Minor areas in 25,		
	20, 27.	Q ()	
Manage	Where surface is	Surface water	Stream lining to trap and uptake nutrients
Give the sust	Guildiord clay, le δ ,	control	Planting, graded bank to reduce overland how
(in the wet	9, 14, 15, 10, 17, 18,		
Limit	19, 20, 21, 22, 25, 25	Control muchooo	<u>Staron lining</u>
Limit	Areas of	Control surface	Streamlining Stabilize clance and stream hanks
sediment	discharge shellow	Tunon	Stabilise slopes and stream banks
drainaga	aley and flat areas		Planting to finter sediments
urainage	Steen slopes of		Pranting, rending, stock control to reduce crossion
	valleys on Darling		r cremmar pastures
	Plateau slopes of		
	Darling Scarn		
	Along river valleve		
	and banks of Darling		
	Plateau Swan		
	Coastal Plain in 3		
	4 5 6 10 11 12		
	13. 14. 15. 18. 21		
1			

Table 3d. Management options to counter dryland salinisation

Groundwater	Priority areas by	Recommended	Examples/actions
management	subcatchments	actions	
objective			
Limit	Where deep rooted	Manage	Control clearing
mobilisation	trees have been	groundwater	Plant deep rooted salt-tolerant vegetation
of stored salt	cleared and there is	recharge	Commercial farm forestry, Maritime pine, Eucalyptus,
	deep saline		Oil mallees, Acacias, and other tree species
	groundwater,		Management of native vegetation and revegetation
	especially poorly		Engineering practices: surface water management via
	drained clays, for		shallow interceptor banks or grade banks
	example on the		
	Darling Plateau, in		
	1, 2, 3, 4, 5, 6.		
	Minor areas in 7,		
	10, 11, 12, 13, 14,		
	15, 24, 26, 27.		
Slow	Near surface clay, in	Maintain or	Control clearing
drainage and	6, 8, 9, 14, 15, 21,	lower	Plant deep rooted high water use trees
evaporative	22, 23, 25. Minor	watertable, e.g.	
concentration	areas in 18, 19, 20.	below 2m	

Table 3e.	Management	options to limit	t point source	contamination	of groundwater
		1	1		-

Groundwater	Priority areas by	Recommended	Examples/actions
management	subcatchments	actions	
objective			
Limit point	Industrial sites	Protect	License land use
source	Waste disposal	groundwater	Monitoring
contamination	sites		Educate on industrial Best Management Practice
of groundwater	Landfill sites		Review the appropriateness of land use
	especially on		
	Bassendean Sand		
	mainly 9, 18, 19,		
	20, 21.		

Publication feedback form

The Water and Rivers Commission welcomes feedback to help us to improve the quality and effectiveness of our publications. Your assistance in completing this form would be greatly appreciated.

Please consider each question carefully and rate them on a 1 to 5 scale, where 1 is poor and 5 is excellent (please circle the appropriate number).

How did you rate the quality of information?

	1	2	3	4	5			
How did you rate the d	esign and presenta	tion of this p	oublication?	>				
	1	2	3	4	5			
How can it be improved	d?							
	1	2	3	4	5			
How effective did you f	ind the tables and f	igures in co	mmunicatir	ng the data	?			
	1	2	3	4	5			
How can they be impro	oved?							
How did you rate this n	ublication overall?							
	1	2	3	4	5			
If you would like to see	this publication in c	other format	s, please s	pecify. (Eg	. CD)			
-					, 			
Please cut along the do	otted line on the left	and return	your comp	leted respo	onse to:			
	Publications	Coordinat	tor					
	Water and Rivers Commission Level 2, Hyatt Centre 3 Plain Street							
	East Perth W	A 6004						
	Fax: (08) 927	8 0639						

WATER AND RIVERS COMMISSION

Hyatt Centre 3 Plain Street East Perth Western Australia 6004

Telephone (08) 9278 0300 Facsimile (08) 9278 0301 Website: www.wrc.wa.gov.au