

METRONET Stage 1: Morley-Ellenbrook Line

Morley Station Acoustic Design Report

MEL-MLCX-AR-RPT-00031

Rev	Date	Purpose of Issue	Prepared	Reviewed	Approved
A01	16/02/2022	Issued for Review	A Deivasigamani	L Zoontjens	

Document Details		
Project METRONET Stage1: Morley-Ellenbrook Line		
Client	Public Transport Authority	
PTA Contract Number	PTA200001	
Laing O'Rourke Project No.	K97	

Document revision history

Rev	Date	Purpose of Issue	Sections revised	Reason for updates
A01	16/02/2022	Issued for Review	First issue	First issue

Table of contents

Mor	ley Sta	tion Aco	ustic Design Report	2	
1.	Exe	cutive Su	ımmary	8	
2.	Proj	ect overv	/iew	9	
	2.1	METRO	ONET Vision and Objectives	9	
	2.2	Morley-	-Ellenbrook Line overview	9	
		2.2.1	Project features	10	
		2.2.2	General scope of works	10	
		2.2.3	Key Project Objectives, Key Compliance Objectives and Critical Success Factors	11	
	2.3	Alliance	e vision and delivery approach	12	
	2.4	Purpos	e of the Report	13	
	2.5	.5 Changes Since Previous Design Submission			
		2.5.1	Alliance Development Stage to Reference Design Stage	13	
		2.5.2	Reference Design to Interim Detailed Design	13	
		2.5.3	Interim Detailed Design to Final Detailed Design	13	
		2.5.4	IFC Design Finalisation	13	
3.	Desi	ign Desc	ription	13	
	3.1	Scope	of this Design Package	13	
	3.2	Design	Description	13	
		3.2.1	Rail operations	13	
		3.2.2	Station and associated infrastructure	13	
		3.2.3	Electrical transformer noise	14	
		3.2.4	Mechanical noise	14	
		3.2.5	Local road traffic and new roundabouts	14	
	3.3	Relatio	nship with other Design Packages	14	
	3.4	Externa	al Interfaces	15	
4.	Desi	ign Input	s	15	
	4.1	Project	Design Requirements	15	
		4.1.1	Environmental noise regulations	15	
		4.1.2	SWTC Requirements	15	
		4.1.3	Operational Scenarios	15	
		4.1.4	Stations and Infrastructure	15	
		4.1.5	Electrical transformers	16	
		4.1.6	Fire pumps	16	
		4.1.7	Mechanical outdoor plant	16	
	4.2	Design	Software Used for this Package	16	
	4.3	Applica	ble Codes and Standards	17	
	4.4	Refere	nce Information	17	
	4.5	Design	Criteria	24	
		4.5.1	Permanent Way	24	
		4.5.2	Stations and Associated Infrastructure	24	
	4.6	.6 Design Life			
	4.7	Durabil	ity Requirements	28	
	4.8	Special	list Technical Inputs		
		4.8.1	Reverberation		
		4.8.2	Noise ingress from Tonkin Highway to Platform areas	31	

		4.8.3 Public Address (PA) Systems	31
		4.8.4 Crowd / Patron Noise	32
		4.8.5 Vehicle Car Parking	32
		4.8.6 Car Parking Laneway and Kiss and Ride	32
		4.8.7 Bus movements	33
		4.8.8 Mechanical outdoor plant	33
		4.8.9 Electrical transformers	33
		4.8.10 Vibration source levels	33
	4.9	Constructability Requirements	34
	4.10	Environmental & Sustainability Design Criteria	34
	4.11	Future Proofing	35
	4.12	Value Engineering	35
	4.13	Third Party Operational Stakeholders	35
	4.14	Design Input from Stakeholders and Community Involvement Process	35
	4.15	Design Risks, Assumptions, Issues, Dependencies, Opportunities, and Constraints (RAID	OC) 35
		4.15.1 Design Risk Register	35
		4.15.2 Design Assumptions	35
		4.15.3 Design Issues	36
		4.15.4 Design Dependencies	36
		4.15.5 Design Opportunities	36
		4.15.6 Design Constraints	36
	4.16	Requests for Information (RFI)	36
5.	Desig	ın Outputs	37
	5.1	Deliverables List	37
	5.2	Drawings and Models	37
		5.2.1 Mechanical plant noise levels	37
		5.2.2 Rail movements	37
		5.2.3 Bus and car parking activities	39
	5.3	Specifications	40
	5.4	Standard Reference Drawings	40
	5.5	System Coordination Drawings and Models	40
	5.6	Type Approvals	40
	5.7	Calculations	40
		5.7.1 Noise Propagation Effects	40
	5.8	Schedules	41
6.	Com	petence for Design	41
7.	Desi	n Reviews and Certification	41
	7.1	Interdisciplinary Design Check (IDC) Review	41
	7.2	IDC Certificate	42
	7.3	Design Verification	42
	7.4	Independent Verification	42
	7.5	BCA	42
	7.6	DDA	42
	7.7	PTA Design Submission Reviews.	42
8.	Desi	ın Compliance	42
	8.1	Standards & Guidelines	42
	8.2	SWTC	42

	8.3	Planning & Environmental Approvals	42
	8.4	Third Party Requirements	42
	8.5	Deviation Register	42
	8.6	Non-Compliances Register	42
9.	Exte	rnal Interface Work Packages	42
	9.1	Project Interface Control Plan	42
10.	Effec	ets of the Works	42
11.	Safet	ty in Design	43
	11.1	Overview	43
	11.2	Systems Safety Assurance Plan.	43
	11.3	Compliance with Safety Assurance Plan	43
	11.4	Safety Analysis	43
	11.5	Safety Argument	43
	11.6	Hazard Analysis	
	11.7	Satisfaction of Safety Integrity Level Targets	43
	11.8	Satisfaction of GSN Requirements	
	11.9	Management of Safety Requirements	
	11.10	Transfer of Residual Risks and Safety Related Operational Conditions	
		Safety Assurance Statement	
12.		ems Engineering	
	12.1	Sub-system Allocation	
	12.2	Requirements Management	
		Engineering Assurance Summary	
13.		ainability in Design	
14.		ng & Commissioning Requirements	
		ITP's	
		Hold Points	
		Witness Points	
15.		an Factors	
16.		bility, Availability and Maintainability (RAM)	
		General RAM Provisions	
		RAM Targets	
17.		struction Methodology	
	17.1	Construction Methods	
	17.2	Operational Staging	
		Works in Track Occupancies	
18.		ot Maintenance Strategy	
	18.1	RTO Assets	
		Other Assets	
19.		et Operations Strategy	
	19.1	Normal Modes of Operations	
		Degraded Modes of Operations	
20.		ommissioning Strategy	
_ U.	20.1	Capability to Modify	
		Decommissioning Strategy	
21.		ect Actions Register	
	-	A: Drawing and Model List	
- PU	JIIWIA F	A PIATINA AND MOUNT ENGINEERING CONTRACTOR OF THE CONTRACTOR OF TH	

Document Number: MEL-MLCX-AR-RPT-00031 Rev: A01

Appendix B: Specifications	50
Appendix C: Standard Drawings	51
Appendix D: Engineering Change Approvals	52
Appendix E: Calculations	53
Appendix F: Schedules	57
Appendix G: ITP Strategy	58
Appendix H: IDC Review Schedule	59
Appendix I: IDC Certificates	60
Appendix J: Design Verification Certificates	61
Appendix K: Independent Verification Certificates	62
Appendix L: BCA Certification	63
Appendix M: DDA Certification	64
Appendix N: PTA Comments Review Register	65
Appendix O: RATM Extract	66
Appendix P: Third Party Approvals	67
Appendix Q: Concessions	68
Appendix R: Non-Compliance/Deviation Report	69
Appendix S: Designers Certificate of Compliance	70
Appendix T: Contractors Certificate of Compliance	71
Appendix U: Durability Assessment	72
Appendix V: Sustainability	73
Appendix W: RFIs	74
Appendix X: Project Interface Control Plan	75
Appendix Y: Project Hazard Log	76
Appendix Z: Safety in Design	77
Appendix AA: Human Factors	78
Appendix BB: Reliability, Availability, Maintainability	79
Appendix CC: Competency Assessment Confirmation Letter	80

Tables

Table 1	Adopted rail noise criteria	24
Table 2	Table of Assigned Noise Levels, dB	25
Table 3	Table of adjustments for intrusive characteristics	25
Table 4	Ambient noise level criteria	26
Table 5	Vibration criteria (SWTC Book 5 Table 31: Airborne Sound Insulation Requirements)	28
Figures		
Figure 1: M	lorley-Ellenbrook Line © METRONET	9
Figure 2: A	rchitect's Impression of Morley Station concept © MELConnx	10
Figure 3: K	ey Project Objectives, Critical Success Factors and Key Compliance Objectives	11
Figure 4: A	D Stage Alliance Vision Development Outcomes (developed with the PTA)	12
Figure 5: M	IELconnx Alliance Vision, Purpose and Values	12
Figure 6: E	xtract of architectural overview plan 25-A-285-AR0010_A01 indicating site locality	16
Figure 7: C	omparison of measured and predicted railway vertical vibration levels over plan distance	34
Figure 8: F	orecast distribution in airborne noise from rail operations for comparison with L _{Aeq} night criteria	38
Figure 9: F	orecast distribution in airborne noise from rail operations for comparison with L _{Amax} criteria	39
Figure 10:	Forecast distribution in airborne noise from station car parking areas for comparison with L _{Aeq} day criteria	40
Figure E11	: Mechanical plant noise emissions screening calc, Morley, day period	53
Figure E12	: Mechanical plant noise emissions screening calc, Morley, night period	54
Figure E13	: Reverberation estimation, Morley concourse CSO	54
Figure E14	: Reverberation times for Morley Staff Crib	55
•	: Reverberation times of Morley Concourse	
Figure E16	: Reverberation times of Morley Platform (under Broun Av)	56

1. Executive Summary

This document discusses noise and vibration levels predicted with operation of the proposed Morley Station and the extent to which those levels comply with applicable statutory and project requirements.

On the basis of the assessment undertaken it is concluded that:

- Overall environmental rail noise levels, when assessed at nearby potential noise sensitive premises are
 predicted to comply with applicable state noise regulations and planning policy. Rail vibration levels are
 predicted to be compliant with recommended levels.
- Road transport noise from car parking areas and local vehicle traffic will increase significantly in the area from current conditions, but are predicted to remain compliant with relevant state policies.
- Station access laneways and Car parking areas will need to avoid the use of speed humps, loose laid road coverings or large smooth painted concrete surfaces to minimise vehicle noise emissions.
- Design of the station plant and facilities such as mechanical services, public address and crowding areas to meet applicable environmental noise regulations may be achieved through conventional / industry standard design approaches and therefore is not anticipated to require specialist design input.
- Noise ingress from Tonkin Highway is estimated to be significant and likely to result in noise levels within station habitable rooms above SWTC targets assuming a standard façade construction. Discussion of options for noise management along with existing station examples have been provided to MELConnx via an RFI (CRF1407 – CRFI-SLR-285-00001) seeking direction, and the project team is currently investigating further options.

Acknowledgement of Country

MELconnx acknowledges the Whadjuk People of the Noongar Nation as the Traditional Custodians of the land and waters on which the Morley-Ellenbrook Line Project is located. We pay our respect to their Elders, both past and present and thank them for their continuing connection to the country, culture and community.

2. Project overview

2.1 METRONET Vision and Objectives

As Perth's single largest investment in public transport, METRONET will transform the way people commute and connect. It will create jobs and business opportunities and stimulate local communities and economic development to assist communities to thrive. The METRONET vision is for a well-connected Perth with more transport, housing and employment choices.

In delivering METRONET, the WA Government has considered peoples' requirements for work, living and recreation within future urban centres with a train station at the heart.

The objectives are to:

- Support economic growth with better connected businesses and greater access to jobs
- Deliver infrastructure that promotes easy and accessible travel and lifestyle options
- · Create communities that have a sense of belonging and support Perth's growth and prosperity
- · Plan for Perth's future growth by making the best use of our resources and funding
- Lead a cultural shift in the way government, private sector and industry work together to achieve integrated land use and transport solutions for the future of Perth.

2.2 Morley-Ellenbrook Line overview

As Perth grows, so does the need for rail infrastructure and METRONET is a critical element of the State Government's infrastructure agenda. The Morley-Ellenbrook Line (MEL) Project will improve connectivity between the north east metropolitan area and the rest of the city and unlock economic development in these local community areas.

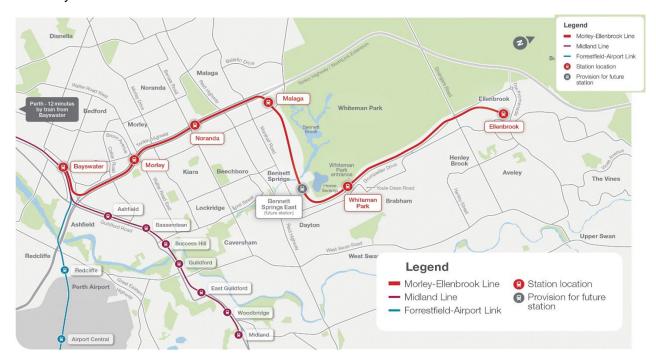


Figure 1: Morley-Ellenbrook Line © METRONET

The Public Transport Authority (PTA) is the lead agency delivering the MEL Project, with Main Roads WA (MRWA) undertaking some enabling works.

2.2.1 Project features

Transport infrastructure works for the Project include:

- A 21km rail line spurring from the Midland Line east of Bayswater Station, travelling north in the Tonkin Highway median, east through land north of Marshall Road and north on the western side of New Lord Street into Ellenbrook
- Stations at Morley, Noranda, Malaga, Whiteman Park and Ellenbrook with future-proofing for a station at Bennett Springs East
- · Parking and bus interchanges/facilities at stations
- · Significant grade separations at key road crossings
- Underpasses to allow the rail line to enter and exit the Tonkin Highway median
- · Principal shared paths for walking and cycling access along the rail line
- Track and associated infrastructure to connect to the existing Midland Line
- · Road and bridge reconfiguration works
- Integration across the packages of works and other nearby projects.

2.2.2 General scope of works

The Project's general scope of works includes the design and delivery of rail infrastructure and ancillary works to support operational passenger rail between Bayswater and Ellenbrook, including stations with inter-modal bus and rail with parking and associated road works at Bayswater, Morley, Noranda, Malaga, Whiteman Park and Ellenbrook stations.

The Project activities include all investigation, design, approvals, construction, testing and commissioning, Entry Into Service (EIS), training and operational readiness required to incorporate the new railway to Ellenbrook, and tie into the existing network including the associated road, utilities and other required works to interface with adjacent works and contracts. This will include bulk earthworks and retaining structures, grade separations, roads and drainage.

The design and delivery of the main works package for the Project is broken into three distinct stages:

- Alliance Development Stage
- Project Alliance Reference Design Stage
- Project Alliance Delivery Stage (Detailed Design through to Project close-out).

Figure 2: Architect's Impression of Morley Station concept © MELConnx

2.2.3 Key Project Objectives, Key Compliance Objectives and Critical Success Factors

The PTA and MELconnx's single Non-Owner Participant (NOP) Laing O'Rourke Construction Australia Pty Ltd, have formed an integrated, collaborative Project Alliance to successfully deliver rail infrastructure that reflects our absolute commitment to achieving the Project Objectives and delivering positive outcomes for the State.

The following image demonstrates how we have mapped each Key Project Objective in the Project Alliance Agreement (PAA) against the Critical Success Factors to achieve best-for-project outcomes, underpinned by the Key Compliance Objectives.

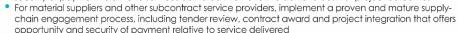
Key Project Objectives

Critical Success Factors for Successful Project Delivery (abbreviated)

Implementation of a robust, cooperative team culture.

- Development of a culture that results in all Participants developing behavioural values and driving principles to achieve Alliance goals and project objectives
- Longevity and stability of key Alliance personnel i.e. Alliance Manager, ALT and AMT.

Timely delivery of Works to achieve project milestones in accordance with agreed program.


- Development of a final proposal with a sufficiently developed design and accurate TOC
- Subsequent cash flow management and financial forecasting, scheduling and value-earned calculation and determination
- Implementation of PTA mandated systems i.e. TeamBinder, Primavera P6, TILOS and a finance system accepting the PTA's cost breakdown structure
- Timely completion of design, construction and commissioning through to practical completion

• Timely progress towards construction milestones and completion of close-out to achieve final asset acceptance compliance.

Inclusion of processes that embrace/promote open tendering and promotion of work package development that encourages/ enables second and third tier tendering. Compliance with WAIPs.

 For professional service providers, implement a proven and mature supply-chain engagement process, including tender review, contract award and project integration. Ensure that it offers opportunity and security of payment relative to services delivered in an effort to achieve best-for-project outcomes

Proven and mature supply-chain engagement process for labour hire services, compliant with industrial and safety laws, maintained employee standards/conditions and security of employee payments

Ability to develop contracts and terms and conditions in the spirit of the Alliance values and principles, appropriate and commensurate with the size, complexity and value of packages in accordance with industry best practice

Optimisation of operational and whole of life costs.

Sustainability considerations and outcomes for the whole of life of the works.

Ensuring appropriate consultation/integration with stakeholders and community.

- Constant and effective engagement with relevant stakeholders, particularly utilities/services, Main Roads, third party asset owners and relevant unions
- Effective management of PTA interfaces and PTA contractors
- Constant/effective engagement with the PTA in design reviews, work planning and possessions/shutdowns.

Providing passengers with safe and secure services and facilities.

- Compliance with ONSR requirements
- Completed rail line, stations and bus transfer infrastructure are able to deal successfully with the movement of people, including the disabled.

Minimising disruption to current and anticipated rail operations.

- Minimise impact on public transport services disruption
- Liaison and interaction with PTA rail operations personnel tasked with determining network closures, to confirm available network shutdowns and implement contingency plans
- Effective management of interfaces with others in heavily constrained areas
- Effective management/staging of works to reflect staged/constrained site access
- Effective management of existing rail infrastructure asset protection.

Recognising the State's desired industrial relations objectives.

Develop a project-specific Industrial Relations Management Plan based on a proven and successful industrial relations approach that delivers a collaborative worksite, genuine collective agreement, making good faith in negotiations and dispute resolution, and respect for trade union rights of entry.

Key Compliance Objectives (abbreviated)

Compliance with all Statutory requirements and State Government policy requirements for construction work.

Compliance with the SWTC.

Protecting and minimising disruption to all existing facilities, infrastructure, properties or public utility services

Meeting all obligations to impacted stakeholders and demonstrating genuine sensitivity.

Compliance with all environmental conditions and minimise adverse environmental impact.

Figure 3: Key Project Objectives, Critical Success Factors and Key Compliance Objectives

2.3 Alliance vision and delivery approach

The MEL Project will be delivered under an alliance contract to support the management of project and stakeholder interfaces and to mitigate project risks. A collaborative alliance approach will see the Works carried out in a cooperative, coordinated and efficient manner in compliance with the Alliance Principles.

MELconnx understands that the successful delivery of the Project is critically linked to meeting the PTA's Key Project Objectives. These objectives have shaped our vision for the Project that is around delivering a high-quality product and creating exceptional value-for-money. We are committed to a no-blame culture and to the prompt and mutual resolution of any issues that may arise.

During the AD Stage, representatives from both the PTA and MELconnx participated in an interactive workshop to begin the process of developing a suitable Alliance Vision for the Project (refer Figure 4 below for workshop outcomes).

Figure 4: AD Stage Alliance Vision Development Outcomes (developed with the PTA)

The Alliance Foundation workshop was held on 11/11/2020 and the results of this workshop generated the basis for the Vision, Purpose, Values and Behaviours Commitment Statements represented here.

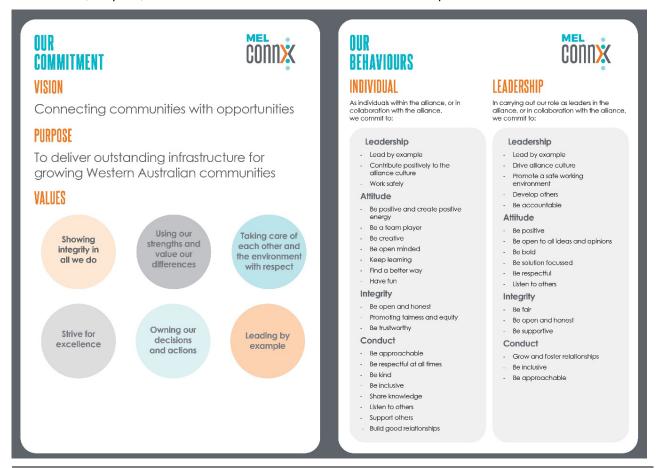


Figure 5: MELconnx Alliance Vision, Purpose and Values

2.4 Purpose of the Report

Morley Station is proposed as a key station where all trains will slow down and stop at the station (no non-stop 'through' traffic as part of normal services).

The project will also involve the construction of a new multi-storey car park, car drop off points and bus interchanges, the operation of which may involve a change in noise levels at nearby residential and other sensitive locations.

This document discusses predicted noise and vibration emissions with operation of the proposed Morley Train Station and the extent to which those levels comply with applicable statutory and project requirements.

This Design Report identifies any interdependencies between each Design Package and how those dependencies have been accommodated within the document. The Design Report describes the relationship between each of the Package(s) engineering lifecycle and the assurance gates throughout the Project.

2.5 Changes Since Previous Design Submission

2.5.1 Alliance Development Stage to Reference Design Stage

Not applicable at this Design Stage.

2.5.2 Reference Design to Interim Detailed Design

Not applicable at this Design Stage.

2.5.3 <u>Interim Detailed Design to Final Detailed Design</u>

Not applicable at this Design Stage.

2.5.4 IFC Design Finalisation

Not applicable at this Design Stage.

3. Design Description

3.1 Scope of this Design Package

The scope of this Design Package is outlined as follows.

 A schedule of recommended controls where required to be considered and reviewed for design optimisation and design/statutory planning approval within the packages is described in Section 3.3.

3.2 Design Description

The following subsections discuss the key project noise and vibration issues assessed in further detail.

3.2.1 Rail operations

Treatments to the railway sections involved at Morley Station are considered in detail within the Operational Noise and Vibration Design Report (ONVDR), refer MEL-MLCX-EN-RPT-00032 for more information. The ONVDR notes that speeds in the immediate vicinity of the station are low for rolling noise levels to be above State Planning Policy 5.4 Road and Rail Noise (SPP5.4) targets that may be assessable at nearby development.

Note that compliance with SPP5.4 does not prevent community complaint. Subjectively, residents in the area may notice noise from low speed rail movements and the braking system air release as trains depart. Train air conditioning systems may also be noticeable on unusually hot days. These noise emissions are modelled to be within SPP5.4 targets.

Given the expected speeds in the immediate vicinity of the station, vibration levels are predicted to be within recommended criteria applicable at adjacent receivers and anticipated future development sites nearby.

3.2.2 Station and associated infrastructure

Asphaltic, bitumen-based road and bare concrete vehicle parking surfaces should be used instead of smooth concrete or heavily painted surfaces which can result in strong sound reflections and/or tyre squeal under cornering.

Speed bumps or sudden changes in road level (e.g. loose gutters, expansion control joints) should be avoided.

Traffic calming where required should be managed via gradual gradient pedestrian crossings (such as wombat crossings).

On the basis of a screening assessment of proposed public address systems (Section 4.8.1) and likely crowd noise (Section 4.8.3), compliance with relevant assigned noise levels is predicted.

The station is predicted to comply with SWTC requirements with regards to internal reverberation levels provided on the basis of absorptive finishes recommended in Section 4.8.1. Refer to Appendix A for recommended treatments to specific building elements in order to meet SWTC requirements around acoustic separation and reverberation.

Whilst the semi-open platforms at the north and south end provide significant access to open air, the platform sections under Broun Avenue will experience higher reverberation times. The increased environmental noise and reverberation is recommended to be accounted for in the design of the public address (PA) and emergency warning and information systems.

3.2.3 Electrical transformer noise

The transformer located just south of the proposed multi-storey carpark is approximately 150 metres from the existing residential uses to the east of station precinct. Based on expected loading and sound power levels for transformers, along with the existing noise walls, it is predicted that noise emissions will be compliant with applicable noise regulations.

3.2.4 Mechanical noise

A basic screening assessment has been undertaken considering the minimum distance to potential noise sensitive development and the proposed mechanical plant and equipment. Given the equipment comprises small enclosed fan coil units and domestic level air conditioning outdoor condensers, compliance with applicable noise regulations is predicted.

3.2.5 Local road traffic and new roundabouts

Local road vehicle traffic noise may vary due to the introduction of the proposed train station but is not assessable within the criteria outlined.

3.3 Relationship with other Design Packages

The relationship and/or reliance of this design package on other MEL design packages is derived from the N2 Matrix and is outlined in the Table below.

Relationship with other Design Packages	Description/Title	Interface Elements	Integration Strategy
E018	Line wide - Permanent Way and Stabling & Track – Transit Space & Structure /Ballast Interface	Trackform Rail web dampers Under ballast matting	Confirm trackform Review rail web damper options
E016	LW Urban Design - Urban Design - Architecture	Noise walls	Confirm spatial inputs and coordinate implementation of recommended treatments
E017	Linewide Urban Design - Landscape	Noise walls	Confirm spatial inputs and coordinate implementation of recommended treatments
E001	Morley Precinct – Urban Design – Architecture	Noise walls	Confirm spatial inputs and coordinate implementation of recommended treatments
E065	Morley Precinct Civil - Fencing and Gates, Retaining Walls & Minor Structures, Noise Walls	Noise walls	Confirm spatial inputs and coordinate implementation of recommended treatments
E069	Morley Station – Electrical - Lighting & LV & Comms & Security	Electrical plant noise emissions	Confirm inputs and coordinate implementation of any recommended treatments

3.4 External Interfaces

The relationship and/or reliance of this design package on external interfaces and details of integration strategies are outlined in the Table below.

Item	External Party	Interface Elements	Integration Strategy
	N/A		

4. Design Inputs

4.1 Project Design Requirements

The following design inputs, loads combinations, standards and other key design inputs have been used in preparation of this report;

4.1.1 Environmental noise regulations

Refer to Section 4.5.1 below.

4.1.2 <u>SWTC Requirements</u>

Refer to Section 4.5.

4.1.3 Operational Scenarios

Normal operations are expected to result in 74 train movements per day (6am to 10pm) and 16 movements per night (10pm to 6am) at the Morley Station.

The "PTA Concept Train Operating Plan" described as being within Book 5 of the SWTC could not be accessed and has been requested in CFRI063. In lieu of this information, these volumes are used from the Reference Design.

4.1.4 Stations and Infrastructure

Stations and infrastructure have been assessed on the basis of supplied drawings to date. We note that the design of Morley Station utilises natural ventilation strategies, with significant openings at sides and/or roof level throughout the platforms.

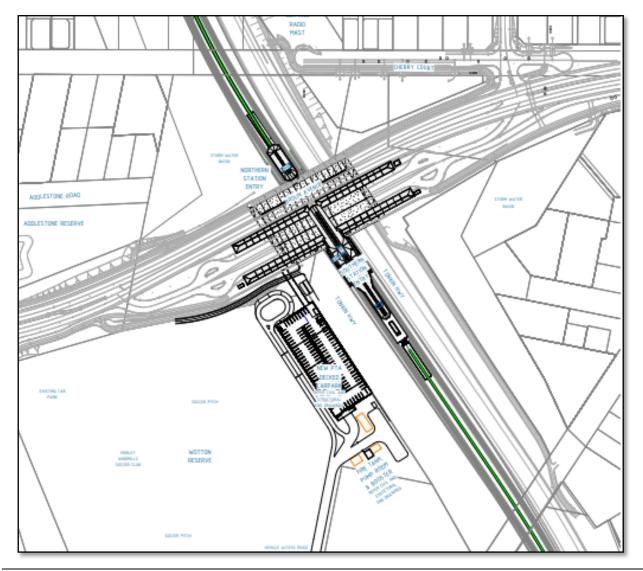


Figure 6: Extract of architectural overview plan 25-A-285-AR0010_A01 indicating site locality.

4.1.5 Electrical transformers

From the supplied drawings, it can be seen that the transformers associated with the station are approximately 150 metres from existing residential development (East of the precinct). By inspection of the likely transformer sound power level / loading and the proposed screening elements, along with the existing noise walls, compliance with the relevant assigned noise levels is predicted.

4.1.6 Fire pumps

From the supplied drawings, it can be seen that the fire pump within the station precinct is approximately 150 metres from the existing development (East of the precinct). By inspection of the likely transformer sound power level / loading and the proposed screening elements, along with the existing noise walls, compliance with the relevant assigned noise levels is predicted.

4.1.7 Mechanical outdoor plant

Drawings 25-A-285-ME0001 to -ME0020 indicate that the outdoor mechanical plant comprise condenser units. Based on rooms served, each would have capacities the order of 6 kW or less (similar to domestic residential air conditioning systems). These units, assessed in cumulative terms, are considered compliant with the assigned noise levels defined in Section 4.5.1 at the nearest noise sensitive premises.

4.2 Design Software Used for this Package

Computer software used to develop this package is outlined in the Table below.

Reference	Supplier	Usage
MS Office 2013	Microsoft Inc. (with proprietary SLR code)	Calculation of in-car noise levels Calculation of 3D receiver distances Calculation of 1D vibration propagation Consolidation and presentation of results 1D propagation / noise analyses
SoundPLAN v8.1	SoundPLAN GmbH	Calculation of site wide airborne noise emissions according to prescribed standards

4.3 Applicable Codes and Standards

Applicable standards, codes and guidelines to this design package (at time of project commencement) including identification of specific provisions, criteria and classifications are provided in the Table below.

Reference	Description/Title	Compliance (Specific Provisions, Criteria and Classifications)			
Australian and	Australian and Other Standards and Guidelines				
CR NOI TSI	Technical specification for interoperability relating to the subsystem 'rolling stock – noise' of the trans-European conventional rail system, adopted by the Commission Decision 2011/229/EU, April 2011	Referenced for typical wheel-rail roughness assumptions			
SPP5.4	State Planning Policy No. 5.4 Road and Rail Noise 2019	Compliance criteria			
EPNR	Western Australia Environmental Protection (Noise) Regulations 1997	Compliance criteria			
AS 2670.1	Evaluation of human exposure to whole-body vibration - General requirements	Reference for assessment method			
AS 2670.2	Evaluation of human exposure to whole-body vibration - Continuous and shock-induced vibration in buildings (1 to 80 Hz)	Referenced for criteria comparison			
ISO GUIDE 98-3	Uncertainty of measurement — Part 3:Guide to the expression of uncertainty in measurement (GUM:1995)	Referenced for uncertainty estimation			
ISO 2631- 1:1997	Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements.	Reference for assessment method			
AS ISO 2631.2:2014	Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Vibration in buildings (1 Hz to 80 Hz).	Compliant			
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2011 ASHRAE Handbook - Heating, Ventilating, and Air-Conditioning APPLICATIONS - SI Edition, Atlanta GA http://www.ashrae.org	Referenced for typical HVAC installation and operations			
FTA	C.E. Hanson, D.A. Towers, and L.D. Meister 2006, Transit Noise and Vibration Impact Assessment, Office of Planning and Environment, Federal Transit Administration, Report FTA-VA-90-1003-06, Washington DC	Referenced for vibration assessment method			
Nord2000	Jonasson HG, Storeheier S. Nord 2000. New Nordic prediction method for rail traffic noise [Internet]. 2001. (SP Rapport).	Rail noise modelling algorithm adopted			
Green Star	Green Star Design and As-built Requirements for Railway Stations (v1.1)	Partially compliant (within the scope of this report)			
ISCA	Infrastructure Sustainability Council of Australia (ISv2.0) Design and As Built	General reference			
PTA Standards	and Specifications				

4.4 Reference Information

The project specific reference information and reports that have been used as inputs into the development of the detailed design are included in the table below.

Document Ref.	Description/Title	Revision
25-A-285-EC0151	Description/Title MEL - MLCX – MORLEY STATION - COMMUNICATIONS - EASE	TBC
	ACOUSTIC MODEL - SHEET 01	
25-A-285-EC0152	MEL - MLCX - MORLEY STATION - COMMUNICATIONS - EASE ACOUSTIC MODEL - SHEET 02	TBC
GCOR-LOR-LW- 00096	Track Inputs for Noise Modelling	02-Jun-2021 13:10 AWST
GCOR-LOR-PW- 00193	Design data for SLR noise modelling	07-May-2021 19:02 AWST
GCOR-LOR-PW- 00166	MELconnx CAD issue to SLR	30-Apr-2021 09:42 AWST
GCOR-LOR-LW- 00047	Latest WIP rail strings	19-Apr-2021 11:51 AWST
GCOR-LOR-PW-	Update to Health Safety Environmental Management System	06-Apr-2021
00128 GCOR-LOR-PW- 00071	Aerial Imagry (sic)	15:56 AWST 01-Apr-2021 15:48 AWST
GCOR-LOR-PW-	Project AD Design Information On ASite	23-Feb-2021
00067		11:16 AWST
MEL-MLCX-EN- RPT-00031	Baseline Noise and Vibration Monitoring Report	A01
25-A-285- AR0083	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT - SHORT ELEVATION	A01
25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL -	101
AR0097	ENLARGED PLANS - PTA DECKED CARPARK	A01
25-A-285- AR0072	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - REFLECTED CEILING PLAN - PLATFORM LEVEL - SHEET 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL	7.61
AR0085	ARRANGEMENT - SECTION - SHEET 2	A01
25-A-285- AR0088	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - ENLARGED PLANS - MSCP SECTIONS	A01
25-A-285- AR0071	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - REFLECTED CEILING PLAN - PLATFORM LEVEL - SHEET 2	A01
25-A-285- AR0044	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT FLOOR PLAN - CONCOURSE LEVEL - SHEET 2	A01
25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL	7.01
AR0043	ARRANGEMENT FLOOR PLAN - CONCOURSE LEVEL - SHEET 1	A01
25-A-285- AR0098	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - ENLARGED PLANS - PTA DECKED CARPARK	A01
25-A-285- AR0015	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - STATION OVERALL PLAN - PLATFORM LEVEL	A01
25-A-285- AR0045	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT FLOOR PLAN - CONCOURSE LEVEL - SHEET 3	A01
25-A-285- AR0073	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - REFLECTED CEILING PLAN - CONCOURSE LEVEL - SHEET 1	A01
25-A-285- AR0095	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - ENLARGED PLANS - PTA DECKED CARPARK	A01
25-A-285- AR0016	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - STATION OVERALL PLAN - CONCOURSE LEVEL	A01
25-A-285- AR0086	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT - SECTION - SHEET 3	A01
25-A-285- AR0074	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - REFLECTED CEILING PLAN - CONCOURSE LEVEL - SHEET 2	A01
25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - STATION	
AR0017 25-A-285-	OVERALL PLAN - ROOF LEVEL MEL - MLCX - MORLEY STATION - ARCHITECTURAL -	A01
AR0096	ENLARGED PLANS - PTA DECKED CARPARK	A01
25-A-285- AR0075	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - REFLECTED CEILING PLAN - CONCOURSE LEVEL - SHEET 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - OVERALL	
AR0010	PLANS - LOCATION PLAN	A01

Document Ref.	Description/Title	Revision
25-A-285- AR0082	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT - LONG ELEVATION - SHEET 3	A01
25-A-285- AR0026	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - OVERALL SECTIONS	A01
25-A-285- AR0042	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT FLOOR PLAN - PLATFORM LEVEL - SHEET 3	A01
25-A-285- AR0084	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT - SECTION - SHEET 1	A01
25-A-285- AR0001	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - COVER PAGE	A01
25-A-285- AR0002	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - DRAWING LIST	A01
25-A-285- AR0081	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT - LONG ELEVATION - SHEET 2	A01
25-A-285- AR0024	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - OVERALL ELEVATIONS - STATION OVERALL ELEVATIONS	A01
25-A-285- AR0041 25-A-285-	MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL ARRANGEMENT FLOOR PLAN - PLATFORM LEVEL - SHEET 2 MEL - MLCX - MORLEY STATION - ARCHITECTURAL - BUS	A01
AR0018 25-A-285-	INTERCHANGE PLAN MEL - MLCX - MORLEY STATION - ARCHITECTURAL - BUS MEL - MLCX - MORLEY STATION - ARCHITECTURAL -	A01
AR0070 25-A-285-	REFLECTED CEILING PLAN - PLATFORM LEVEL - SHEET 1 MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL	A01
AR0080 25-A-285-	ARRANGEMENT - LONG ELEVATION - SHEET 1 MEL - MLCX - MORLEY STATION - ARCHITECTURAL - BUS	A01
AR0019 25-A-285-	INTERCHANGE ROOF PLAN MEL - MLCX - MORLEY STATION - ARCHITECTURAL - OVERALL	A01
AR0087 25-A-285-	ELEVATIONS - MSCP ELEVATIONS MEL - MLCX - MORLEY STATION - ARCHITECTURAL - GENERAL	A01
AR0040 25-A-285-	ARRANGEMENT FLOOR PLAN - PLATFORM LEVEL - SHEET 1 MEL - MLCX - MORLEY STATION - LANDSCAPING - GENERAL	A01
LA0065 25-A-285-	ARRANGEMENT & FINISHES PLAN MEL - MLCX - MORLEY STATION - LANDSCAPING - GENERAL	A02
LA0067 25-A-285-	ARRANGEMENT & FINISHES PLAN MEL - MLCX - MORLEY STATION - LANDSCAPING - GENERAL	A02
LA0066 25-A-285-	ARRANGEMENT & FINISHES PLAN	A02
LA0006 25-A-285-	MEL - MLCX - MORLEY STATION - LANDSCAPING - SCHEDULES MEL - MLCX - MORLEY STATION - LANDSCAPING - GENERAL	A02
LA0069 25-A-285-	ARRANGEMENT & FINISHES PLAN MEL - MLCX - MORLEY STATION - LANDSCAPING - LEGEND &	A02
LA0002 25-A-285-	NOTES MEL - MLCX - MORLEY STATION - LANDSCAPING - GENERAL	A02
LA0068 25-A-285-	ARRANGEMENT & FINISHES PLAN MEL - MLCX - MORLEY STATION - LANDSCAPING - LANDSCAPE	A02
LA0010 25-A-285-	SITE PLAN MEL - MLCX - MORLEY STATION - LANDSCAPING - COVER	A02
LA0001 25-A-285-Cl0001	SHEET MEL - MLCX - MORLEY STATION - CIVIL - COVER SHEET AND DRAWING INDEX	A02
25-A-285-CI0111	MEL - MLCX - MORLEY STATION - CIVIL - PAVEMENT AND KERBING - DETAIL - SHEET 1	A01
25-A-285-Cl0112	MEL - MLCX - MORLEY STATION - CIVIL - PAVEMENT AND KERBING - DETAIL - SHEET 2	A01
25-A-285-CI0060	MEL - MLCX - MORLEY STATION - CIVIL - GENERAL ARRANGEMENT - OVERALL PLAN	A01
25-A-285-CI0020	MEL - MLCX - MORLEY STATION - CIVIL - DRAINAGE AND FINISHED SURFACE - OVERALL PLAN	A01

Document Ref.	Description/Title	Revision
Document Ref.	MEL - MLCX - MORLEY STATION - CIVIL - COMBINED	Revision
25-A-285-CI0070	PROPOSED UTILITIES - OVERALL PLAN	A01
23-A-203-010070	MEL - MLCX - MORLEY STATION - CIVIL - MINOR STRUCTURES	701
25-A-285-CI0130	- OVERALL PLAN	A01
20 A 200 010 100	MEL - MLCX - MORLEY STATION - CIVIL - BULK EARTHWORKS -	7101
25-A-285-CI0002	OVERALL PLAN	A01
2071 200 010002	MEL - MLCX - MORLEY STATION - CIVIL - PAVEMENT AND	7.01
25-A-285-CI0100	KERBING - OVERALL PLAN	A01
	MEL - MLCX - MORLEY STATION - CIVIL - VEHICLE TRACKING -	
25-A-285-CI0150	OVERALL PLAN	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - PLATFORM	-
ST0016	LEVEL PLAN - SHEET 1 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	
ST0037	SHEET 11 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - CONCOURSE	
ST0019	LEVEL PLAN - SHEET 1 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	
ST0032	SHEET 6 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - COVER	
ST0001	SHEET & DRAWING INDEX	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - ROOF PLAN -	
ST0024	SHEET 3 OF 5	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	404
ST0033	SHEET 7 OF 13	A01
25-A-285-	MEL MICH MODIEVICTATION CTRUCTURAL OR VIEW	404
ST0002	MEL - MLCX - MORLEY STATION - STRUCTURAL - 3D VIEW	A01
25-A-285- ST0003	MEL - MLCX - MORLEY STATION - STRUCTURAL - SITE PLAN	A01
25-A-285-	MEL - MICX - MORLEY STATION - STRUCTURAL - FOUNDATION	AUT
ST0008	PLAN - SHEET 1 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	7.01
ST0030	SHEET 4 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - CONCOURSE	7.0
ST0020	LEVEL PLAN - SHEET 2 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - ROOF PLAN -	
ST0025	SHEET 4 OF 5	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - ROOF PLAN -	
ST0026	SHEET 5 OF 5	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	
ST0039	SHEET 13 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	404
ST0038	SHEET 12 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - PLATFORM	A01
ST0017 25-A-285-	LEVEL PLAN - SHEET 2 OF 3 MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	A01
ST0031	SHEET 5 OF 13	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - PLATFORM	701
ST0018	LEVEL PLAN - SHEET 3 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - ROOF PLAN -	7.01
ST0023	SHEET 2 OF 5	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - CONCOURSE	
ST0021	LEVEL PLAN - SHEET 3 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - FOUNDATION	
ST0010	PLAN - SHEET 3 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - FOUNDATION	
ST0009	PLAN - SHEET 2 OF 3	A01
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	
ST0034	SHEET 8 OF 13	A01

Document Ref.	Description/Title	Revision
25-A-285-	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS -	Revision
ST0027	SHEET 1 OF 13	A01
25-A-285- ST0028	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS - SHEET 2 OF 13	A01
25-A-285- ST0022	MEL - MLCX - MORLEY STATION - STRUCTURAL - ROOF PLAN - SHEET 1 OF 5	A01
25-A-285- ST0035	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS - SHEET 9 OF 13	A01
25-A-285- ST0029	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS - SHEET 3 OF 13	A01
25-A-285- ST0036	MEL - MLCX - MORLEY STATION - STRUCTURAL - SECTIONS - SHEET 10 OF 13	A01
25-A-285- EG0101	MEL - MLCX - MORLEY STATION - ELECTRICAL - COVER SHEET	A02
25-A-285- EG0154	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - LEVEL 1 - LIGHTING LAYOUT	A01
25-A-285- EG0150	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 1 - LIGHTING LAYOUT	A01
25-A-285- EG0153	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - GROUND LEVEL - LIGHTING LAYOUT	A01
25-A-285- EG0175	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - LEVEL 2 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0111	MEL - MLCX - MORLEY STATION - ELECTRICAL - SITE PLAN - LIGHTING	A01
25-A-285- EG0126	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 2 - POWER LAYOUT	A01
25-A-285- EG0167	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 3 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0146	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 2 - LIGHTING LAYOUT	A01
25-A-285- EG0156	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - LEVEL 3 - LIGHTING LAYOUT	A01
25-A-285- EG0168	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 1 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0127	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 3 - POWER LAYOUT	A01
25-A-285- EG0139	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 2 - CONTAINMENT LAYOUT	A01
25-A-285- EG0105	MEL - MLCX - MORLEY STATION - ELECTRICAL - LUMINAIRE SCHEDULE PART 2	A01
25-A-285- EG0103	MEL - MLCX - MORLEY STATION - ELECTRICAL - LEGEND	A01
25-A-285- EG0172	MEL - MLCX - MORLEY STATION - CAR PARK EXTERNAL - ELECTRICAL - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0187	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 3 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0138	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 1 - CONTAINMENT LAYOUT	A01

Document Ref.	Description/Title	Revision
	Description/Title MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL -	A01
25-A-285- EG0169	ELECTRICAL - ZONE 2 - EMERGENCY LIGHTING LAYOUT	AUT
25-A-285- EG0147	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 3 - LIGHTING LAYOUT	A01
25-A-285- EG0176	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - LEVEL 3 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0170	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 1 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0152	MEL - MLCX - MORLEY STATION - CAR PARK EXTERNAL - ELECTRICAL - LIGHTING LAYOUT	A01
25-A-285- EG0198	MEL - MLCX - MORLEY STATION - ELECTRICAL - SINGLE LINE DIAGRAM - EARTHING & BONDING	A01
25-A-285- EG0185	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 1 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0189	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 2 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0110	MEL - MLCX - MORLEY STATION - ELECTRICAL - SITE PLAN - POWER	A01
25-A-285- EG0186	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 2 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0190	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 1 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0131	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 2 - POWER LAYOUT	A01
25-A-285- EG0130	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 1 - POWER LAYOUT	A01
25-A-285- EG0141	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 2 - CONTAINMENT LAYOUT	A01
25-A-285- EG0165	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 1 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0112	MEL - MLCX - MORLEY STATION - ELECTRICAL - SITE PLAN - POWER DISTRIBUTION - DEMARCATION	A01
25-A-285- EG0151	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 2 - LIGHTING LAYOUT	A01
25-A-285- EG0148	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 1 - LIGHTING LAYOUT	A01
25-A-285- EG0104	MEL - MLCX - MORLEY STATION - ELECTRICAL - LUMINAIRE SCHEDULE PART 1	A01
25-A-285- EG0188	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 1 - COMMUNICATIONS CONTAINMENT LAYOUT	A01
25-A-285- EG0173	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - GROUND LEVEL - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0191	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 2 - COMMUNICATIONS CONTAINMENT LAYOUT	A01

Document Ref.	Description/Title	Revision
25-A-285-	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL -	A01
EG0174	ELECTRICAL - LEVEL 1 - EMERGENCY LIGHTING LAYOUT	
25-A-285- EG0155	MEL - MLCX - MORLEY STATION - CAR PARK INTERNAL - ELECTRICAL - LEVEL 2 - LIGHTING LAYOUT	A01
25-A-285- EG0145	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 1 - LIGHTING LAYOUT	A01
25-A-285- EG0135	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 1 - CONTAINMENT LAYOUT	A01
25-A-285- EG0128	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 1 - POWER LAYOUT	A01
25-A-285- EG0129	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 2 - POWER LAYOUT	A01
25-A-285- EG0136	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 2 - CONTAINMENT LAYOUT	A01
25-A-285- EG0140	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 1 - CONTAINMENT LAYOUT	A01
25-A-285- EG0137	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 3 - CONTAINMENT LAYOUT	A01
25-A-285- EG0166	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 2 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0171	MEL - MLCX - MORLEY STATION - BUS INTERCHANGE - ELECTRICAL - ZONE 2 - EMERGENCY LIGHTING LAYOUT	A01
25-A-285- EG0149	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - ELECTRICAL - ZONE 2 - LIGHTING LAYOUT	A01
25-A-285- EG0125	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - ELECTRICAL - ZONE 1 - POWER LAYOUT	A01
25-A-285- ME0020	MEL - MLCX - MORLEY STATION - MECHANICAL - SCHEMATIC DIAGRAM	A01
25-A-285- ME0011	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - MECHANICAL - ZONE 3 - MECHANICAL LAYOUT	A01
25-A-285- ME0021	MEL - MLCX - MORLEY STATION - MECHANICAL - SECTIONS	A01
25-A-285- ME0013	MEL - MLCX - MORLEY STATION - CONCOURSE LEVEL - MECHANICAL - ZONE 2 - MECHANICAL LAYOUT	A01
25-A-285- ME0010	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL - MECHANICAL - ZONE 2 - MECHANICAL LAYOUT	A01
25-A-285- ME0002	MEL - MLCX - MORLEY STATION - MECHANICAL - LEGEND	A01
25-A-285- ME0017	MEL - MLCX - MORLEY STATION - MULTI-STORY CAR PARK - MECHANICAL - LEVEL 3 - MECHANICAL LAYOUT	A01
25-A-285- ME0016	MEL - MLCX - MORLEY STATION - MULTI-STORY CAR PARK - MECHANICAL - GROUND FLOOR - MECHANICAL LAYOUT	A01
25-A-285- ME0001	MEL - MLCX - MORLEY STATION - MECHANICAL - COVER SHEET	A02
25-A-285- ME0005	MEL - MLCX - MORLEY STATION - MECHANICAL - SITE PLAN	A01

Document Ref.	Description/Title	Revision
25-A-285-	MEL - MLCX - MORLEY STATION - PLATFORM LEVEL -	A01
ME0009	MECHANICAL - ZONE 1 - MECHANICAL LAYOUT	

4.5 Design Criteria

The design criteria utilised in the development of this report are outlined below.

4.5.1 <u>Permanent Way</u>

SWTC 13.6.1-3 states that

The Alliance must design and construct the operating passenger railway and any associated noise mitigation controls to meet the requirements of "State Planning Policy No. 5.4 Road and Rail Noise (SPP 5.4)" (WAPC, 2019).

The Alliance must design and construct the operating passenger railway to ensure that the LAmax applicable to the 95th percentile train passby event is 80 dB or less at buildings with a noise sensitive use located on noise sensitive premises.

The table below outlines the adopted noise objective levels in regard to airborne noise during road and rail operations. Noise mitigation must be provided where the noise level is above these targets

Table 1 Adopted rail noise criteria

Metric	Application	Value(s)	Notes
Period	Major upgrade of existing railway	L _{Aeq,day} 60 dB	SPP5.4
average noise levels	Applied where emissions from MID and FAL lines are considered significant (Bayswater area) New railway	L _{Aeq,night} 55 dB	
		L _{Aeq,day} 55 dB	
	(All other locations)	L _{Aeq,night} 50 dB	
Maximum noise levels	Line wide	L _{Amax} 80 dB	95 th percentile. SWTC

These objectives are assessed outdoors, 1 metre from the main building on a lot associated with a noise sensitive usage. Consistent with SPP5.4, the criteria are assessed

- Only at premises that are occupied or designed for occupation or use for residential purposes (including
 dwellings, residential buildings or short-stay accommodation), caravan parks, camping grounds, educational
 establishments, child care premises, hospital, nursing home, corrective institution; or place of worship (Note
 that this excludes recreational parks, commercial and industrial premises along the alignment results will be
 determined for these locations, but mitigation would not be recommended); and
- at all floor levels where identified from surveys, noting that sufficient mitigation (in the context of the targets) may not reasonable or practicable at higher floors.

4.5.2 Stations and Associated Infrastructure

Section 13.7 of Book 4 of the SWTC details the noise and vibration Technical Criteria requirements for the design and operation of the station and associated infrastructure, and includes the following statements:

The Alliance must address noise and vibration impacts associated with station noise impacts, inclusive of any new road infrastructure to service the stations, to surrounding sensitive receivers, occupational health and amenity for PTA staff and patrons.

[..] Noise and Vibration Criteria for Impacts to Surrounding Sensitive Premises at Stations and associated infrastructure (eg. car parks, plant rooms etc.) must be designed to comply with the requirements of the Environmental Protection (Noise) Regulations 1997 (WA).

[..] The Alliance shall determine the noise criteria for impacts from Station entry roads and grade separations and design roads and any associated noise mitigation controls to meet the requirements of Western Australia State Planning Policy No 5.4, Road and Rail Noise 2019.

4.5.2.1 Environmental Noise Regulations

Environmental noise emissions (excluding trains and some emissions from road vehicles) from various premises to nearby noise receiving premises are covered by legislation in the form of the *Western Australia Environmental Protection (Noise) Regulations 1997*, which operate under the *Environmental Protection Act 1986*. For this project, these regulations apply to stations and ancillary operational equipment, and specifically do not apply to narrow gauge trains.

To achieve compliance, received noise levels at nearby premises including noise sensitive premises (for example, residential, commercial and industrial premises) are not to exceed specified noise limits in the form of assigned noise levels. The Act gives state authorities powers to order financial penalties and closure of plant that are in excess of assigned noise levels through a formal investigation process. There are methods within the Regulations by which assets found to be producing excessive noise be managed on an ongoing basis in consultation with the Department of Water and Environment Regulation (DWER), say through noise management plans and/or alternative criteria, however at its core of any such agreement is that the proponent will exercise all reasonable and practicable measures to minimise noise.

The assigned noise levels, as shown in Table 2, vary for each noise sensitive receiver, as they are determined from consideration of Influencing Factors (IF) which takes into account the amount of commercial, industrial and road transport infrastructure within specific distances to the receiving noise sensitive premises.

Table 2 Table of Assigned Noise Levels, dB

Part of premises receiving noise	Time of day	L _{A10}	L _{A1}	L _{Amax}
Noise Sensitive premises at locations within 15 metres of a	0700 to 1900 hours Monday to Saturday	45 + IF	55 + IF	65 + IF
building directly associated with a noise sensitive use	0900 to 1900 hours Sunday and public holidays	40 + IF	50 + IF	65 + IF
	1900 to 2200 hours all days	40 + IF	50 + IF	55 + IF
	2200 hours on any day to 0700 Monday to Saturday and 0900 hours Sunday and public holidays	35 + IF	45 + IF	55 + IF
Noise Sensitive premises at locations further than 15 metres from a building directly associated with a noise sensitive use.	All hours	60	75	80
Commercial premises	All hours	60	75	80
Industrial and utility premises	All hours	65	80	90

For Morley station, the closest sensitive receivers are located approximately 150 m from the station platforms, bus stations or car park. An IF of 10 dB is applied in accordance with the Regulations based on:

- Presence of major road within 100 m of the receiver (transport factor of 6 dB); and
- Presence of industrial and commercial in the surrounding including the proposed Morley station precinct (factor of 4 dB).

Regulation 7 of the *Environmental Protection (Noise) Regulations 1997* requires that, if noise emitted from any premises when received at any other premises cannot reasonably be free of intrusive characteristics of tonality, modulation and impulsiveness, then a series of adjustments must be added to the emitted levels (measured or calculated) and the adjusted level must comply with the assigned level. The adjustments are detailed in Table 3 and are further defined in Regulation 9(1) of the *Environmental Protection (Noise) Regulations 1997*.

Note that the following adjustments (Table 3) generally apply to fixed plant and infrastructure only.

Table 3 Table of adjustments for intrusive characteristics

Application	Where tone(s) are present	Where modulation is present	Where impulsiveness is present
Adjustment where noise emission is not music (These adjustments are cumulative to a maximum of 15 dB)	+5dB	+5dB	+10dB

Tones are defined in Regulation 9(1) as being present where the difference between the A weighted sound pressure level in any one third octave band and the arithmetic average of the A-weighted sound pressure levels in the two adjacent one third octave bands is greater than 3dB in terms of $L_{Aeq,T}$ where the time period T is greater than 10% of the representative assessment period, or greater than 8dB at any time when the sound pressure levels are determined as LAS levels.

Modulation is defined as a variation in the emission of noise that —

- is more than 3 dB L_{AF} or is more than 3 dB L_{AF} in any one third octave band;
- is present for at least 10% of the representative assessment period; and
- is regular, cyclic and audible.

Impulsiveness is defined as present where the difference between L_{Apeak} and L_{ASmax} is more than 15dB when determined for a single representative event.

During the assessment process the above adjustments have been applied to relevant noise sources, taking into account specific intrusive characteristics of these noise sources based on SLR's in-house noise database. It is unlikely that modulation or impulsiveness characteristics would apply to PTA fixed assets being typically electrical power transformers or air handling plant

4.5.2.2 Ambient Noise Levels within Passenger Station Areas

Section 13.7.1 of the SWTC defines acceptable noise levels via the following table, as defined in AS 1055.1:1997 and assessed according to AS/NZS 2107:2000. In order to be consistent with the SWTC, the 2000 version of AS/NZS 2107 is followed in this assessment and not the more recent 2016 version. However, the internal noise and reverberation requirements in the 2016 version are similar with no significant changes to recommended values that are relevant to this project. As such, no compromise to acoustic amenity is anticipated in using the SWTC requirements (which references the 2000 version).

Table 4 Ambient noise level criteria

Area	Scenario	Minimum acceptable noise level (dB)	Maximum acceptable noise level (dB)
Ticket sales area	Building services and plant	-	L _{Aeq} 45
General office areas	Building services and plant	-	L _{Aeq} 45
Staff crib rooms	Building services and plant	-	L _{Aeq} 45
Public waiting areas, kiosks	Building services and plant	-	L _{Aeq} 45
Toilets and amenities	Building services and plant	L _{Aeq} 45	L _{Aeq} 55
Parking and waste storage areas	Building services and plant	-	L _{Aeq} 65
Platforms, at any position within 1.5m of platform edge or centreline (whichever is closer to track), and more than 8 metres from Portals	Stationary trains, auxiliary equipment operating as normal	-	L _{Aeq} 70
	Moving trains	-	L _{ASmax} 80
	Building services and plant (ventilation, escalators, etc.)	-	L _{Aeq} 55
	Emergency smoke fan systems	-	L _{Aeq} 85
Plantrooms	Building services and plant	-	L _{Aeq} 85
All other areas	All	-	Table 1, AS/NZS 2107:2000 'Satisfactory' values plus 5dB

Section 13.7.1 of the SWTC also states that

For enclosed rooms containing plant, equipment and electrical power Assets, noise levels must be assessed at no less than 1 metre from any item of equipment; and noise levels from mechanical ventilation systems serving the room must not exceed L_{Aeq} 65dB.

The criteria listed above in this section do not apply to systems or components operating in emergency mode. In this situation, noise generated by the systems or their components must comply with AS 1670.4 and AS 1668.1, and not exceed levels that affect speech intelligibility in egress paths, evacuation assembly areas, or operational or emergency control rooms or areas.

4.5.2.3 Noise and Vibration Ingress into Passenger Station Areas

Generally, from SWTC Book 4:

- 13.2-1 The Alliance must design station entry roads, grade separations and roads works and any associated noise mitigation controls to meet the requirements of "State Planning Policy No. 5.4 Road and Rail Noise (SPP 5.4)" (WAPC, 2019).
- [..] 13.5-3 The Alliance must consider the cumulative noise impact from road traffic and the operating
 passenger railway when designing and constructing any noise mitigation measures along Tonkin Highway.
- [..] 13.7-2 The Alliance must address noise and vibration impacts associated with station noise impacts, inclusive of any new road infrastructure to service the stations, to surrounding sensitive receivers, occupational health and amenity for PTA staff and patrons.

These all point to the same thing, ambient noise on the platform and occupiable spaces. SWTC 13.7.1 is most specific, stating the Alliance "shall design station areas to comply with" an internal target of L_{Aeq} 45 dB, inline with the reference standards.

Section 13.7.2 of the SWTC states that the Alliance shall also comply with the following requirements:

Floor vibration levels within publicly accessible areas from plant, equipment or external sources not exceed $L_{v,RMS,1S}$ 112dB.

4.5.2.4 Reverberation within Passenger Station Areas

Section 13.7.3 of the SWTC states that the Alliance shall comply with the following requirements:

Within platform areas, the spatial average reverberation time (RT60) values for the full octave bands with centre frequencies 500Hz and 1kHz not exceed 1.3 seconds for the scenario where 100 patrons are present, or 1.6 seconds when empty.

At all other areas, spatial average reverberation time (RT60) values for the full octave bands with centre frequencies 500Hz and 1 kHz be in accordance with AS/NZS 2107:2000 given the usage of each space.

4.5.2.5 Public Address Systems within Passenger Station Areas

Section 13.7.4 of the SWTC states that:

The Alliance must ensure that the PA systems achieve the minimum sound level and speech intelligibility requirements of clause 4.3.4 and 4.3.6 of AS 1670.4 for all representative locations, environmental conditions and passenger levels

External noise ingress from adjacent road traffic sources must be assessed and considered when designing and constructing all stations to ensure that the public address systems within passenger station Areas achieve the minimum sound level and speech intelligibility requirements of clause 4.3.4 and 4.3.6 of AS 1670.4 for all representative locations, environmental conditions and passenger levels.

4.5.2.6 Acoustic Sound Insulation within Passenger Station Areas

Section 13.7.5 of the SWTC states that:

Airborne sound insulation targets are given in terms of the weighted level difference, Dw between two spaces. The Alliance must ensure that design complies with the following general in-situ airborne sound insulation targets:

- Dw ≥ 35dB between normally occupied enclosed spaces.
- Dw ≥ 28dB between normally occupied spaces where the common partition includes a door.

The following table presents criteria that supersede these general requirements for specific occupied spaces.

Where two different space types are adjacent to one another, the Alliance must ensure that the more onerous target applies.

Table 5 Vibration criteria (SWTC Book 5 Table 31: Airborne Sound Insulation Requirements)

	Space Type / Occupancy	Minimum Weighted Sound Level Difference, Dw, dB
Between normally occupied back of	Generally	40
house offices and crib rooms	Where the common partition at the interface includes a door	30
Toilets and amenities to nearby public	Generally	42
areas	Where the common partition at the interface includes a door	25
	Where the common partition at the interface has no door	16

SWTC 13.7.5 also states that

Where receiving spaces are not fully enclosed, the closest point of assessment must be at least 4 metres from the nearest door or window or the nearest scheduled seating position, whichever is closest.

Noise from hydraulic services associated with toilet amenities (e.g. flushing) must not be audible in any other publicly accessible area.

Noise from hand dryers within toilets and amenities should not be audible at any position more than 2 metres from the entrance, and must not be audible at any commercial retail or patron seating areas.

4.6 Design Life

Not applicable.

4.7 Durability Requirements

Not applicable.

4.8 Specialist Technical Inputs

4.8.1 Reverberation

Reverberation times must be controlled within occupiable spaces in accordance with Section 4.5.2.4. Based on criteria from this section, reverberation times within the concourse area are recommended to be reduced as far as is practicable. It is anticipated that these recommendations can be achieved through the suitable installation of 150 m^2 of absorptive finishes achieving Class A or B according to EN ISO 11654, or minimum a_w 0.80 (Noise Reduction Coefficient NRC 0.80).

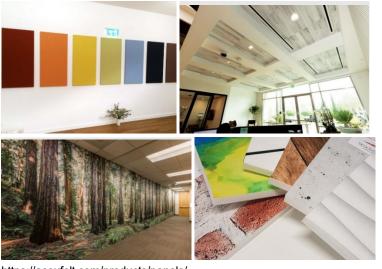
The platform section under Broun Avenue is acknowledged to experience significantly higher reverberation times (> 1.6 s) than typical open platform sections. However, options for absorptive treatments within platform areas are limited considering that majority of the surfaces are bridge structures and retaining walls under Broun Avenue. As such reverberation times are recommended to be minimised as far as feasible via architectural treatments where possible. The PA system design shall carefully consider reverberations within platform areas to ensure relevant STI targets are achieved.

The markups in Appendix A refer to absorptive finishes within identified primary spaces. The following table provides various examples of such products. The selected product should be of Class A or B according to EN ISO 11654, or minimum a_w 0.80 (Noise Reduction Coefficient NRC 0.80).

Porous recycled glass

Name Image (Source), link

Quietstone Standard or Pyrotek Reapor



Description

material designed primarily for direct fixing to walls and ceilings. Non-toxic, non-flammable and not affected by moisture. Non fibrous material. Can be cleaned with a high pressure hose. Classified Class A according to EN ISO 11654 (50 mm+) Used in various Perth train stations already (Elizabeth

Quay, Joondalup etc.)
Main downside is risk of friable silica dust when broken / handled.

Acoufelt

Can be self-adhesive backed (Direct fix) or mechanically fixed

Can be ordered with hi resolution image print
Low resistance to damage
EN ISO 11654 Class C (α_w 0.70-0.75) or better
25 to 100 mm thick polyester with fabric facing
Non-toxic, Non-allergenic,Non-irritant

Pyrotek Echohush

EN ISO 11654 Class C (α_w 0.70-0.75) or better

25 to 100 mm thick polyester with fabric facing

Direct fix installation

Recyclable, various colour options

Can be used to pin / Velcro items on

Non-toxic, Non-allergenic, Non-irritant

Name	Image (Source), link	Description
CSR Martini DECO Quiet Panel	http://www.csrmartini.com.au/products/decorative-acoustic-products	Effectively equivalent to Pyrotek Echohush
Stratocell Whisper FR	http://www.soundblock.com.au/sound-absorbers/stratocell-whisper	EN ISO 11654 Class C (α _w 0.70-0.75) or better 25 to 100 mm thick Polyethylene foam (unpainted) Lightweight and easily cut into shapes, affix to walls or hang
Asona Triton	http://www.asona.co.nz/	EN ISO 11654 Class B (α _w 0.80-0.85) 25 to 100 mm thick glass fibre with fabric facing Direct fix installation Recyclable, various colour options
Renhurst RenAcoustic Baffles	http://renhurst.com/renacoustic-baffles/	EN ISO 11654 Class C (α _w 0.70-0.75) or better Rigid fibreglass core and a fine textured fleece Lightweight with various suspension options
Himmel Ecophon Solo Panels	https://www.himmel.com.au/product-listing/2016/07/13/ecophon-solo-panels	Suspended colour panels Likely limited extent due to ceiling fan / air movement needs Glass fibre reinforced for rigidity

Name Image (Source), link **Description** Stratocell Claimed to be resilient to Whisper water and humidity Flame retardant and/or Group 1 fire rating. Claimed self-extinguishing material (Class B2) to DIN 4101 series Light weight and noncorrosive. Easy to fix and fasten, pinned or glued Sheet size is 2400 x 1200 x 50mm thick www.soundblock.com.au/sound-absorbers/stratocell-whisper Classified Class A according to EN ISO 11654 32-48 kg/m³ Manufactured by spinning glasswool or molten glass, containing up mineral fibre to 80% recycled material, into faced with fine fibres which are then glass fabric bonded together using a thermosetting resin. Typical density of 48 to 60 kg/m³. Non-flammable, non-toxic material which is not affected by moisture. Typically installed in perforated sheet metal enclosures with an additional spun bonded cloth film to protect from dust and moisture. Industrial product with relatively long product www.bradfordinsulation.com.au/

With the control of reverberation, it is anticipated that the PA intelligibility requirements can be achieved through careful speaker system design within the concourse, as discussed in the subsection 4.8.3.

4.8.2 Noise ingress from Tonkin Highway to Platform areas

Baseline monitoring report MEL-MLCX-EN-RPT-00031 documents monitoring at Stirling Station to be LAeq 78 dB on the open ends of the platform. Accounting for substantially more trucks on Tonkin in the future, the same report estimates Morley and Noranda station platform levels to be around LAeq 80 dB.

A noise reducing wall between the Station and the Tonkin Hwy should be considered for the following reasons:

- The internal noise levels into the platform offices may exceed the targets under SWTC with a standard façade construction
- The ambient levels on platform are predicted to be sufficiently high, thereby requiring passengers to have a raised voice (or shout) to be audible
- There may be challenges in the PA system being sufficiently intelligible under the SWTC and AS 1670.4.

A detailed discussion along with possible mitigation options are provided to MELConnx (via RFI CRFI407 CRFI-SLR-285-00001) and the project team is currently investigating feasible options.

4.8.3 Public Address (PA) Systems

The public address system will need to be designed to be sufficiently audible (involving both sound level and speech intelligibility) to meet relevant provisions of Australia Standard 1670.4, Fire Detection, Warning, Control and Intercom Systems - System Design, Installation and Commissioning - Sound Systems and Intercom Systems for Emergency Purposes (AS 1670.4) such that patrons can be advised in case of emergencies.

By inspection of each station arrangement and distancing to the nearest residential receivers (screening assessment), it can be seen that there is a range of sound levels which can meet both the minimum sound level limit requirements of AS 1670.4 and the maximum noise level limits listed.

An active PA system which regulates speaker volume depending on actual ambient sound level conditions to maintain intelligibility is recommended for the Morley Station.

The PA system is currently designed by the communications designer, and the detailed results of compliance will be published as the project progresses. The following items are being considered in the PA design process:

- Ambient/background noise levels typically experienced on platforms as estimated in the Baseline Monitoring Report (MEL-MLCX-EN-RPT-00031).
- Investigation on the requirement of external noise screening to platforms to achieve STI targets (as discussed in RFI CRFI407 CRFI-SLR-285-00001).
- Reverberation times within concourses and platforms (as discussed in Section 4.8.1).

4.8.4 Crowd / Patron Noise

Average crowd and patron noise levels in the context of the design criteria and other environmental noise sources are considered insignificant.

The arrangement of the station has passenger waiting areas on the platform and entry areas at distances over 100 metres from potential sensitive premises and/or generously spaced open environments.

Providing this level of distance separation and low crowd densities is predicted to result in sustained crowd / patron noise levels (conversations, walking) as individually L_{Aeq} 60 dB @ 1 metre or less, and therefore below L_{Aeq} 30 dB @ 40 metres will be at a cumulative level that is inaudible at nearby residential locations against other background environmental noise.

4.8.5 Vehicle Car Parking

EU Parking Area Noise 2007¹ guidelines have been used to provide an indicative level of noise emissions on surrounding areas.

- Vehicle movement rate for P&R facilities over under 20 km from CBD. A vehicle entering or exiting a parking bay is one movement, so the same vehicle arriving and departing on the same day completes two movements.
 - 0.30 per hour per parking bay (6 am to 10 pm).
 - 0.06 per hour per parking bay (10 pm to 6 am).
- Random fill across all parking lots.²
- Impulse correction K_I 4 dB.
- L_{w0} 63 dB (standardised vehicle sound power level).

4.8.6 Car Parking Laneway and Kiss and Ride

Car movements have been modelled using Nord2000 methodologies with the following parameters:

² Random fill assumed in the absence of a specific car parking traffic analysis. Fill patterns in practice may vary due to proximity to train station, and presence of ticketed parking and/or reserved parking.

¹ Bayer, Landesamt für Umwelt 2007, Parking Area Noise - Recommendations for the Calculation of Sound Emissions of Parking Areas, Motorcar Centers and Bus Stations as well as of Multi-Storey Car Parks and Underground Car Parks, Bayerisches Landesamt für Umwelt, Parkplatzlämstudie 6, Aufl., August 2007.

- Movements of up to 40 vehicles per hour during the day, and up to 10 vehicles per hour during the night has been assumed for the assessment.
- Changes in level from arriving / idling / departure at stations (as assessed at nearest noise sensitive location)
 have been determined insignificant and not modelled. Publicly accessible road sections beyond the loop or its
 intersections are not included.
- Ground class F (compacted dense ground).
- Category 1 vehicles approximately LAE 78 dB at 7.5m and 40 km/hr.
- Traffic case F (40 km/hr max).
- Asphalt concrete surface, any increases in noise level due to gradients was included on the basis of the ground topography provided.

4.8.7 Bus movements

Bus vehicles have been modelled using Nord2000 methodologies with the following parameters:

- Bus movements of up to 4 buses per stand per hour during the day (up to 48 buses/hour in total), and 0.5 bus per stand per hour during the night (up to 6 buses/hour in total) has been assumed for the assessment.
- Changes in level from arriving / idling / departure at stations (as assessed at nearest noise sensitive location)
 have been determined insignificant and not modelled. Publicly accessible road sections beyond the loop or its
 intersections are not included.
- Ground class F (compacted dense ground).
- Category 2a vehicles (up to 12.5m length and 2 axles, e.g. Volgren OC500LE), approximately L_{Amax} 75dB, L_{AE} 78dB at 7.5m and 35km/hr.
- Traffic case F (35km/hr max).
- Asphalt concrete surface, any increases in noise level due to gradients was included on the basis of the ground topography provided.

4.8.8 <u>Mechanical outdoor plant</u>

The supplied drawings indicate that the outdoor mechanical plant comprise condenser units. Based on rooms served, each would have capacities the order of 6 kW or less (similar to domestic residential air conditioning systems). These units, assessed in cumulative terms, are considered compliant with internal noise criteria and the assigned noise levels defined in Section 4.5.1 at the nearest noise sensitive premises.

4.8.9 Electrical transformers

From the supplied drawings, it can be seen that the transformers associated with the station are approximately 25 metres from nearest residential property to the east of the site. By inspection of the likely transformer sound power level / loading and the proposed screening elements, compliance with the relevant assigned noise levels is predicted.

4.8.10 <u>Vibration source levels</u>

Vibration emissions from the site will be mainly controlled by rail traffic. Road vehicles will also contribute where speed humps, loose panels (e.g. gutter or pit covers) or sudden variations in road surface are introduced.

This assessment acknowledges that typical rail vibration levels in the immediate area will decrease from corresponding decreases in rail speeds when all trains pass through Morley Station (rather than pass through the area at or near the track section limit).

On a number of previous projects in Perth, ground vibration measurements have been carried out by SLR adjacent to surface rail track carrying passenger trains at a variety of distances from the rail centreline at each site. As each marker indicates levels which were not exceeded by 95% of trains, typical (median) measured levels are lower.

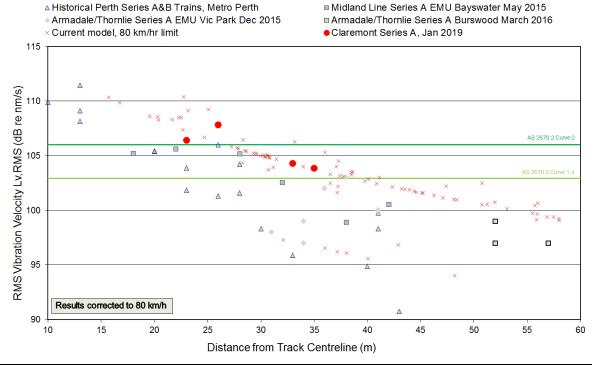


Figure 7: Comparison of measured and predicted railway vertical vibration levels over plan distance

Adjusting for speeds around 40 km/hr, which would be the highest speed that could be expected in the vicinity of the station, typical vibration levels will comply with Curve 1.4 (Residential) at approximately 30m from the nearest track centreline. Curve 2 will be complied with at approximately 20m from the nearest track centreline. For reduced speeds associated with stopping trains, rail vibration levels applicable to station areas are also considered to meet the Ly, RMS-1s 112dB requirement referenced in Section 4.5.2.3.

Actual results will vary from these estimates according to rail condition, in situ soil and terrain profiles; however even after allowing for such variation, vibration levels are predicted to be compliant.

On the basis of the above, the project provisions for vibration mitigation may be limited to avoiding road speed humps and loose coverings for buses and heavy vehicle traffic if applicable. Where traffic speed control is required, gradual gradient pedestrian crossings (such as wombat crossings) are proposed to be implemented which is not predicted to introduce noticeable noise and/or vibration increase.

4.9 Constructability Requirements

Not applicable.

4.10 Environmental & Sustainability Design Criteria

Should this station be considered in regards to Credit 14 under Green Star Design and As-built Requirements for Railway Stations (v1.1), there are four (4) points available under Acoustic Comfort. These relate to:

- 14.1 Internal Noise Levels
- 14.2 Reverberation
- 14.3 Audibility
- 14.4 Hearing Loop Coverage

The SWTC requirements for Station internal noise levels (Section 4.5.3.1) and reverberation (Section 4.5.3.3) is predicted to achieve the design credits under 14.1 and 14.2 of the Green Star requirements. As-built credits are achievable via compliant post-construction measurements.

The credits for Audibility and Hearing Loop Coverage (14.3 and 14.4) are not within the scope of this Report.

The noise and vibration design requirements under ISCA are applicable line wide and are covered within the Operational Noise and Vibration Design Report (MEL-MLCX-EN-RPT-00032).

4.11 Future Proofing

Not applicable.

4.12 Value Engineering

Not applicable.

4.13 Third Party Operational Stakeholders

Not applicable.

4.14 Design Input from Stakeholders and Community Involvement Process

Not applicable.

4.15 Design Risks, Assumptions, Issues, Dependencies, Opportunities, and Constraints (RAIDOC)

Detailed of design risks, assumptions, issues, dependencies, opportunities and constraints are outlined below.

4.15.1 Design Risk Register

Design risks related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Noise and reverberation on platform areas. The platform section under Broun Avenue is acknowledged to experience significantly higher reverberation times (> 1.6 s) than typical open platform sections. However, options for absorptive treatments within platform areas are limited considering that majority of the surfaces are bridge structures and retaining walls under Broun Avenue. As such reverberation times are recommended to be minimised as far as feasible via architectural treatments where possible. The PA system design shall carefully consider reverberations within platform areas to ensure relevant STI targets are achieved.	Open	
	Transport noise ingress into enclosed staff areas being excessive on SWTC targets. Increasing the airborne sound insulation of customer service and staff areas may not be sufficient or appropriate. Reference is made to CRFI407 for further discussion.	Open	

4.15.2 Design Assumptions

Design assumptions related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Rough / diffusive wall finishes. If walls are hard reflective, then wall extents may need to be revised.		
	Existing residential walls and noise walls relevant to the report outcomes are acoustically sound, continuous / without gaps.		
	Car parking and vehicle trafficable areas avoid the use of loose laid road coverings, e.g. openable drains and grates are positively secured with mechanical fasteners.		
	Car parking and vehicle trafficable areas avoid the use of smooth concrete surfaces, e.g. concrete surfaces are brush		

	finished or otherwise rough such that tyres do not squeak under heavy steering.	
6	Cumulative mechanical external plant noise emissions do not exceed L _{WA} 92 dB during the day and L _{WA} 83 dB at night, which is considered to be a conservative estimate of commercial split systems servicing existing outdoor train stations in Perth (up to the order of 60 kW installed capacity outdoors). This includes the effects of screening panels and station buildings.	

4.15.3 <u>Design Issues</u>

Design issues related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Not applicable at this design stage		

4.15.4 <u>Design Dependencies</u>

Design dependencies related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Noting Rail Systems Australia appears to have already constructed EASE models for Morley Station (25-A-285-EC0151 and 25-A-285-EC0153), responsibility for production of Speech Transmissibility Index (STI) contours and design of loudspeaker arrangements to be submitted as part of the various Station packages will rest with Rail Systems Australia.		

4.15.5 <u>Design Opportunities</u>

Design opportunities related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Not applicable at this design stage		

4.15.6 <u>Design Constraints</u>

Design constraints related to this design package are detailed in the Table below;

ID	Description	Status	Evidence of Validation
	Not applicable at this design stage		

4.16 Requests for Information (RFI)

Requests for information submitted in relation to this design package are outlined in the Table below.

Copies of the RFIs are provided in Appendix W of this report.

RFI	Description/Title	Response
062	Noise and Vibration - Baseline Measurements	Closed

CRFI-SLR-PW-00001		
063 CRFI-SLR-PW-00002	Noise and Vibration Assessments - Data Input Log / Requests	Closed
068 CRFI-SLR-PW-00003	Conversion of federated model 25-B-00-0001.4.0.IFI to AutoCAD	Closed
CRFI407	Morley Station - Highway Noise Walls	Open

5. Design Outputs

5.1 Deliverables List

Not applicable.

5.2 Drawings and Models

5.2.1 <u>Mechanical plant noise levels</u>

Forecast internal noise levels on the basis of nominated mechanical arrangements and specifications are provided for selected spaces as follows:

Description of Area / Room	Space Type Definition	Target sound level, L _{Aeq} , dB	Estimated range, L _{Aeq} , dB
25-A-285-AR0015 DRIVER WC	Toilets and amenities	45 to 55	40 to 50
25-A-285-AR0015 CSO OFFICE	General office areas	45	<40
25-A-285-AR0015 TEA PREP	Staff crib rooms	45	<40
25-A-285-AR0016 CONCOURSE CSO	General office areas	45	<40
25-A-285-AR0016 MALE and FEMALE AMENITIES	Toilets and amenities	45 to 55	40 to 50
25-A-285-AR0016 STAFF CRIB	Staff crib rooms	45	<40
25-A-285-AR0015 PLATFORM	Platforms	70	60 to 65
25-A-285-AR0016 CONCOURSE	Public waiting areas	45	40 to 50

5.2.2 Rail movements

Figure 8 and Figure 9 present forecast noise levels from rail operations in the vicinity of the station.

Figure 8: Forecast distribution in airborne noise from rail operations for comparison with L_{Aeq} night criteria

Figure 9: Forecast distribution in airborne noise from rail operations for comparison with L_{Amax} criteria

5.2.3 Bus and car parking activities

Figure 10 presents forecast noise levels in the vicinity of the station as a result of modelled bus and car parking / drop off facilities according to Section 4. It can be seen that noise impacts at adjacent development areas from road vehicles can be managed to levels compliant with applicable criteria.

Figure 10: Forecast distribution in airborne noise from station car parking areas for comparison with L_{Aeq} day criteria

It can be seen that the predicted levels from bus and car parking activities at the station are within the targets outlined in Section 4.5.2 to the nearest receivers.

5.3 Specifications

Not applicable at this design stage.

5.4 Standard Reference Drawings

Not applicable.

5.5 System Coordination Drawings and Models

Not applicable.

5.6 Type Approvals

Not applicable.

5.7 Calculations

5.7.1 Noise Propagation Effects

5.7.1.1 Path Attenuation Factors

Outside the rail reserve, the environmental factors relevant to noise propagation were modelled as follows:

- Topography dataset of existing conditions for the assessment area was sourced from Landgate and adapted to the provided alignment in 3D dwg format.
- Given the relatively short propagation distances, weather conditions for each time period were considered neutral, with 20°C ambient temperature and no prevailing wind or temperature gradient effects.

Existing noise barrier and fence heights and locations were reviewed with necessary corrections being made
to reflect their realistic existing conditions. The modelling was then carried out on the basis that these fences
and barriers are acoustically solid, i.e. they perform as effective noise barriers, being of suitable construction to
sufficiently reduce noise transmission.

5.7.1.2 Air Attenuation and Diffraction

The propagation of railway noise from source to nearby sensitive areas has been estimated using industry standard numerical code that has been validated through field measurements.

- 'N2k': The Nord2000 Rail prediction method is an update to the Kilde formulation based on advancements in the late 1990s. The main benefit comes from the fact that the N2k methodology calculates in terms of one-third octave bands, rather than a single number to represent all frequencies. This is critical in regards to the design of noise walls, because their effectiveness is strongly frequency dependent – the difference in noise reduction at higher frequencies is vastly different compared to low frequencies.
- The ISO 9613 Industrial Prediction Model has been used for predicting noise from stationary assets with noise sources including sirens and bells. Various weather conditions can be taken into account in this modelling algorithm.

Stationary noise sources are modelled according to the parameters outlined in the following Table.

Parameter	Day period	Night period
Wind speed	Nil (ISO 9613, C _{met} = 0dB)	Nil (ISO 9613, C _{met} = 0dB)
Temperature inversion lapse rate	Nil (ISO 9613)	Nil (ISO 9613)
Temperature	20°C	15°C
Relative humidity	50%	50%
Mean barometric pressure	1013hPa	1013hPa

These sources are generally those assessed under the Regulations, such as crowd noise, public address systems, fixed mechanical plant and idling buses not on public roads.

5.7.1.3 Ground absorption

The table below summarises the ground absorption rates modelled.

Parameter	Value	Comments
Default	0	Hard ground
Rail reserve generally	0	Hard ground
Undeveloped sites, loose soil	0	Conservatively assuming future development / sealed surfaces
Significant road and sealed concrete surfaces	0	Conservatively 100% hard reflective
Established parks and reserves	0.6	60% sound absorptive

5.8 Schedules

Not applicable.

6. Competence for Design

Not applicable at this Design Stage.

7. Design Reviews and Certification

7.1 Interdisciplinary Design Check (IDC) Review

7.2 IDC Certificate

Not applicable at this Design Stage.

7.3 Design Verification

Not applicable at this Design Stage.

7.4 Independent Verification

Not applicable at this Design Stage.

7.5 BCA

Not applicable at this Design Stage.

7.6 DDA

Not applicable at this Design Stage.

7.7 PTA Design Submission Reviews.

Not applicable at this Design Stage.

8. Design Compliance

The demonstration of compliance with the requirements of the Project Definition Documents, including any non-conformances of concessions is summarised on the following sections.

8.1 Standards & Guidelines

See Section 4.3.

8.2 **SWTC**

Not applicable at this Design Stage.

8.3 Planning & Environmental Approvals

Not applicable at this Design Stage.

8.4 Third Party Requirements

Not applicable at this Design Stage.

8.5 Deviation Register

Not applicable at this Design Stage.

8.6 Non-Compliances Register

Not applicable at this Design Stage.

9. External Interface Work Packages

9.1 Project Interface Control Plan

Not applicable at this Design Stage.

10. Effects of the Works

Not applicable.

11. Safety in Design

11.1 Overview

Not applicable.

11.2 Systems Safety Assurance Plan.

Not applicable.

11.3 Compliance with Safety Assurance Plan

Not applicable.

11.4 Safety Analysis

Not applicable.

11.5 Safety Argument

Not applicable.

11.6 Hazard Analysis

Not applicable.

11.7 Satisfaction of Safety Integrity Level Targets

11.8 Satisfaction of GSN Requirements

Not applicable.

11.9 Management of Safety Requirements

Not applicable.

11.10 Transfer of Residual Risks and Safety Related Operational Conditions

Not applicable.

11.11 Safety Assurance Statement

Not applicable.

12. Systems Engineering

12.1 Sub-system Allocation

Not applicable.

12.2 Requirements Management

Not applicable.

12.3 Engineering Assurance Summary

Not applicable.

13. Sustainability in Design

Not applicable.

14. Testing & Commissioning Requirements

Not applicable.

14.1 ITP's

Not applicable.

14.2 Hold Points

Not applicable.

14.3 Witness Points

Not applicable.

15. Human Factors

Not applicable.

16. Reliability, Availability and Maintainability (RAM)

16.1 General RAM Provisions

Not applicable.

16.2 RAM Targets

Not applicable.

17. Construction Methodology

17.1 Construction Methods

Not applicable.

17.2 Operational Staging

Not applicable.

17.3 Works in Track Occupancies

Not applicable.

18. Asset Maintenance Strategy

Not applicable.

18.1 RTO Assets

18.2 Other Assets

Not applicable.

19. Asset Operations Strategy

The following operational strategy has been assumed in this design package:

19.1 Normal Modes of Operations

19.2 Degraded Modes of Operations

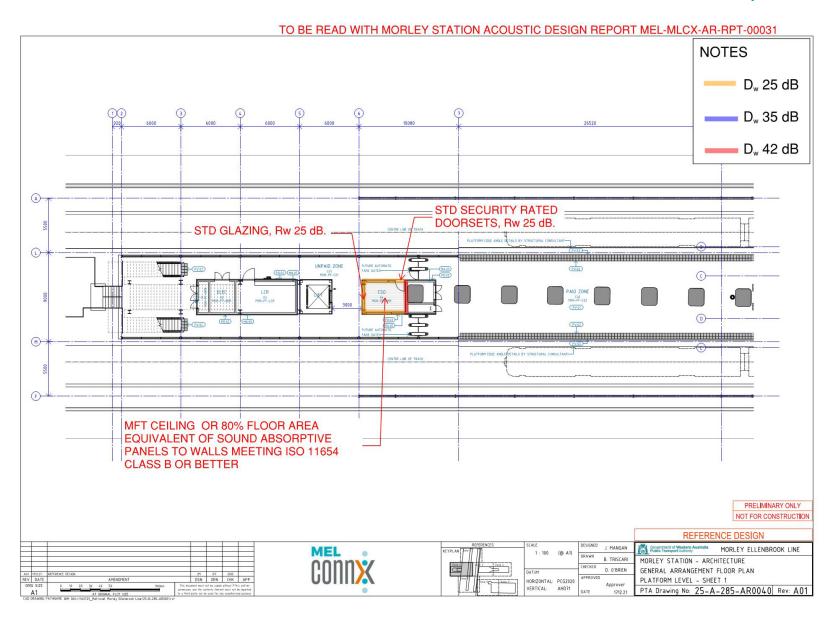
20. Decommissioning Strategy

Not applicable.

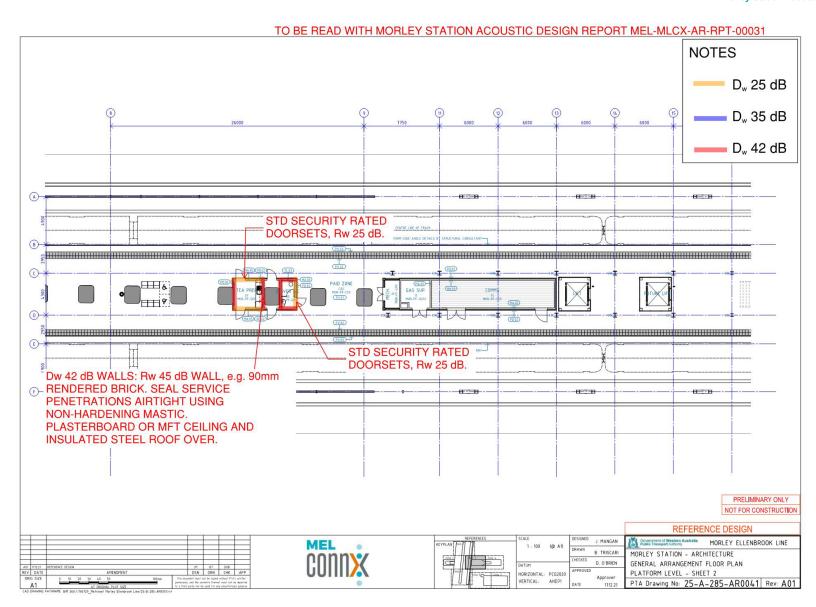
20.1 Capability to Modify

20.2 Decommissioning Strategy

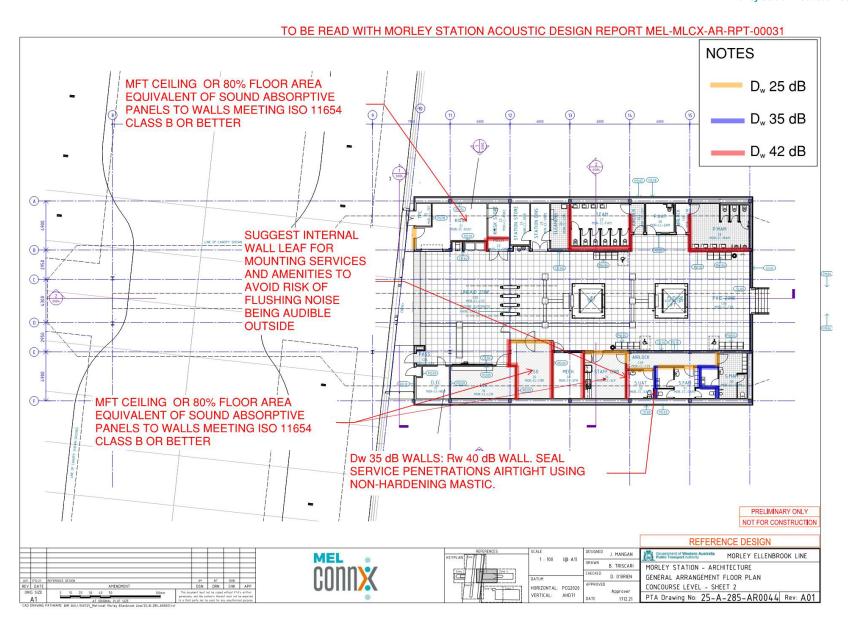
21. Project Actions Register


A list of outstanding issues and assumptions that may affect the design are outlined in the Table below.

ID	Outstanding Issues	Potential Effect	Status
	Final arrangement of loudspeakers / PA systems	Increased noise emissions	



Appendix A: Drawing and Model List



Appendix B: Specifications

Appendix C: Standard Drawings

Appendix D: Engineering Change Approvals

Appendix E: Calculations

Job No.	Job Title			
675.30045	MEL D			
Date Created	By	Date Revised	Rev	Sheet
31 Jan 2022	AD	31 Jan 2022	0	3
Date Reviewed	Ву	Review Type	Review St	atus

Morley Mechanical Noise Emissions - Screening Calc (ISO9613)

	Ratir	g/Broadband	d/Input			Octav	e Band	Centre l	requen	cy, Hz		
Item / Description	Rating	dB	dB(A)	31.5	63	125	250	500	1k	2k	4k	8k
Source levels / inputs												
Empirical Air-Cooled Condenser Lw Conservative power level	60.0 kW		92.0 (A)		96	96	93	90	86	83	80	72
Day reduced duty			0.0									
Emission level, total			92.0 (A)		96	96	93	90	86	83	80	72
Separation distance from station centre	180.0 m											
Air temp	20.0											
Environmental losses For distances r >> source dimension of	İs											
Point Source Propagation Loss	180.0 m	3.0 dB		-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0
Atmospheric Attenuation - Theory: ISO	180 m	20 °C	RH 70%		0.0	-0.1	-0.2	-0.5	-0.9	-1.6	-4.1	-13.8
Ground Attenuation, Theory: ISO 9613.2, Source Zone Ground 50% Soft Ground, M	180.0 m	1.0 m	1.5 m		4.8	1.4	-4.9	-4.3	1.1	2.4	2.4	2.4
Assume no barriers, wall reflection or screening effects												
Received level outdoors, night LAeq			38 (A)		47.6	44.2	34.7	32.0	33.0	30.6	25.1	7.4
Residential day time target (EPNR) 10 dB influencing factor			55 (A)									
Excess on target (level of compliance)			(17.3)									
Forecast level of compliance is more	re than desig	n uncertaint	у									

Figure E11: Mechanical plant noise emissions screening calc, Morley, day period

Job No.	Job Title			
675.30045	MEL D			
Date Created	Ву	Date Revised	Rev	Sheet
31 Jan 2022	AD	31 Jan 2022	2	1
Date Reviewed	Ву	Review Type	Review St	atus

Morley Mechanical Noise Emissions - Screening Calc (ISO9613)

Ratir	g/Broadband	l/Input			Octav	e Band	Centre F	requen	cy, Hz		
Rating	dB	dB(A)	31.5	63	125	250	500	1k	2k	4k	8k
60.0 kW		92.0 (A)		96	96	93	90	86	83	80	72
		-9.0									
		83.0 (A)		87	87	84	81	77	74	71	63
180.0 m											
20.0											
do											
_											
180.0 m	3.0 dB		-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0	-53.0
180 m	20 °C	RH 70%		0.0	-0.1	-0.2	-0.5	-0.9	-1.6	-4.1	-13.8
1 180.0 m	1.0 m	1.5 m		4.8	1.4	-4.9	-4.3	1.1	2.4	2.4	2.4
		29 (A)		38.6	35.2	25.7	23.0	24.0	21.6	16.1	-1.6
		45 (A)									
		(16.3)									
re than desig	n uncertaint	, ,									
	Rating 60.0 kW 180.0 m 20.0 ds 180.0 m 180 m 180 m	Rating dB 60.0 kW 180.0 m 20.0 180.0 m 3.0 dB 180.0 m 20°C 180.0 m 1.0 m	60.0 kW 92.0 (A) -9.0 83.0 (A) 180.0 m 20.0 ds 180.0 m 3.0 dB 180 m 20 °C RH 70% (1 180.0 m 1.0 m 1.5 m 29 (A) 45 (A)	Rating dB dB(A) 31.5 60.0 kW 92.0 (A) -9.0 83.0 (A) 180.0 m 20.0 ds 180.0 m 3.0 dB -53.0 180.0 m 1.0 m 1.5 m 29 (A) 45 (A) (16.3)	Rating dB dB(A) 31.5 63 60.0 kW 92.0 (A) 96 -9.0 83.0 (A) 87 180.0 m 20.0 180.0 m 3.0 dB -53.0 -53.0 180.0 m 1.0 m 1.5 m 4.8 29 (A) 38.6 45 (A) 36.6	Rating dB dB(A) 31.5 63 125 60.0 kW 92.0 (A) 96 96 -9.0 83.0 (A) 87 87 180.0 m 20.0 180.0 m 3.0 dB -53.0 -53.0 -53.0 180.0 m 1.0 m 1.5 m 4.8 1.4 29 (A) 38.6 35.2 45 (A)	Rating dB dB(A) 31.5 63 125 250 60.0 kW 92.0 (A) 96 96 93 -9.0 83.0 (A) 87 87 84 180.0 m 20.0 RH 70% 1.5 m 1.5 m 29 (A) 4.8 1.4 -4.9 29 (A) 38.6 35.2 25.7	Rating dB dB(A) 31.5 63 125 250 500 60.0 kW 92.0 (A) 96 96 93 90 -9.0 83.0 (A) 87 87 84 81 180.0 m 3.0 dB -53.0 -53.0 -53.0 -53.0 -53.0 180 m 20 °C RH 70% 4.8 1.4 -4.9 -4.3 29 (A) 45 (A) 38.6 35.2 25.7 23.0	Rating dB dB(A) 31.5 63 125 250 500 1k 60.0 kW 92.0 (A) -9.0 83.0 (A) 87 87 84 81 77 180.0 m 20.0 180.0 m 3.0 dB -53.0 -53.0 -53.0 -53.0 -53.0 -53.0 1.1 180.0 m 1.0 m 1.5 m 4.8 1.4 -4.9 -4.3 1.1 29 (A) 45 (A) (16.3)	Rating dB dB(A) 31.5 63 125 250 500 1k 2k 60.0 kW 92.0 (A) -9.0 83.0 (A) 87 87 84 81 77 74 180.0 m 20.0 180.0 m 3.0 dB -53.0 -53.0 -53.0 -53.0 -53.0 -53.0 -53.0 1.6 180.0 m 1.0 m 1.5 m 4.8 1.4 -4.9 -4.3 1.1 2.4 29 (A) 38.6 35.2 25.7 23.0 24.0 21.6	Rating dB dB(A) 31.5 63 125 250 500 1k 2k 4k 60.0 kW 92.0 (A) 96 96 93 90 86 83 80 -9.0 87 87 87 84 81 77 74 71 180.0 m 20.0 180.0 m 3.0 dB -53.0 -53.0 -53.0 -53.0 -53.0 -53.0 -53.0 1.6 -4.1 180.0 m 1.0 m 1.5 m 4.8 1.4 -4.9 -4.3 1.1 2.4 2.4 29 (A) 38.6 35.2 25.7 23.0 24.0 21.6 16.1

Figure E12: Mechanical plant noise emissions screening calc, Morley, night period

																Job No.		Job Title				
strutt																31 Jan Date Revie	2022	AD	31 Jan Review Ty	2022	Rev 0 Review S	Shee 4 status
Morley Station CS	6O																					
							Octav		ption Coef Centre F		cy, Hz					Octav		al Sabine: Centre	, m² Frequen	cy, Hz		
Item / Description		Area, m²	X/Y/Z	Rating	31.5	63	125	250	500	1k	2k	4k	8k	31.5	63	125	250	500	1k	2k	4k	
ibrary - Type: Absorption, Source:	Local, IC Floor - Vinyl or linoleum concrete	21.0		NRC 0.03			0.02	0.02	0.03	0.04	0.04	0.05				0	0	1	1	1	1	
ibrary - Type: Absorption, Source:	Local, IE Ceiling - 9-mm plasterboard on batter	4.2		NRC 0.11			0.30	0.20	0.15	0.05	0.05	0.05				1	1	1	0	0	0	
Library - Type: Absorption, Source:	Local, IE Walls - Painted plaster	18.6		NRC 0.02			0.02	0.02	0.02	0.02	0.02	0.02				0	0	0	0	0	0	
Library - Type: Absorption, Source:	Local, IE Glazing (6mm)	30.8		NRC 0.04			0.10	0.06	0.04	0.03	0.02	0.02				3	2	1	1	1	1	
Library - Type: Absorption, Source:	Local, IE Solid timber door	1.9		NRC 0.08			0.14	0.10	0.06	0.08	0.10	0.10				0	0	0	0	0	0	
Treatment																						
Library - Type: Absorption, Source:	Local, IE Ceiling - 13-mm mineral tile, suspend	16.8		NRC 0.76			0.75	0.70	0.65	0.85	0.85	0.80				13	12	11	14	14	13	Г
																						Т
																						Г
Item / Description		No. Items	X/Y/Z	Rating	31.5	63	125	Sabir 250	500	m, m² 1k	2k	4k	8k	31.5	63	125	Tot 250	al Sabines 500	, m² 1k	2k	4k	- 8
																						Г
Nom / Description		Innut	-	-	31.5	63	125	Sabines /	Reverbera 500	tion Time	2k	414	8k									_
Item / Description Room		Input 6 m	T _{BO LE}	T _{60 MF}	31.5	63	125	250	500	1K	2K	4k	8K									
Room Constant, m ²		2 m	93 m²	57 m³	0	0	22	19	16	21	21	21	4									
Total Sabines, m²		167 Hz			0	0	18	15	14	17	17	17	4									
Average absorption coefficient					0	0	0	0	0	0	0	0	0									
Air Attenuation dB/m		343.0 m/s	20.0°C	RH 50%	0.000	-	0.000	0.000				-0.025		3.0								
Prediction Method Comparison							-							on 2.5								
Sabine		BR 92%	0.55 s	0.60 s			0.51	0.59	0.66	0.54	0.54	0.53		Σ								_
Eyring		BR 91%	0.50 s	0.55 s			0.46	0.54	0.61	0.49	0.49	0.48		ugg 1.5 -								_
Fitzroy (Eyring)		BR 91%	0.50 s	0.55 s			0.46	0.54	0.61	0.49	0.49	0.48		ig 10 -								
Result	Shape, Target	Speech	5.50 3	0.60 s			0.40	5.04	0.01	0.40	0.40	0.40	_	0.5 -								-
Zhang	Grape, raiget	BR 92%	0.52 s	0.60 s			0.48	0.56	0.62	0.50	0.50	0.50		0.0 -	.5 €	3 12	5 25	0 50	0 1k	2 k	4	_ `
-	Minimum				0.00	0.00							0.20					Freque				
Design Target	Minimum	BR 91%	0.44 s	0.48 s	0.30	0.30	0.39	0.48	0.48	0.48	0.48	0.39	0.30			- Sabine - Zhang		Eyrin	-		itzroy (Eyri	ng)
Design Target	Maximum	BR 100%	0.72 s	0.72 s	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72			emeng		Mini			neamigitti	

Figure E13: Estimated reverberation times, Morley concourse CSO

Prediction Method Comparison BR 100% 0.62 s 0.64 0.69 0.55 0.54 0.53 BR 99% 0.56 s 0.57 s 0.54 0.59 0.64 0.50 0.49 0.48 BR 99% 0.56 s 0.57 s 0.59 0.64 0.50 0.49 0.48 Fitzroy (Eyring) Result Shape, Target Speech 0.60 s Zhang BR 100% 0.58 s 0.58 s 0.55 0.61 0.65 0.51 0.50 0.50 Design Target Minimum BR 91% 0.44 s 0.48 s 0.30 0.30 0.39 0.48 0.48 0.48 0.48 0.39 0.30 Design Target
Strutt Version 5.21.09E (Comm BR 100% 0.72 s 0.72 s 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 06 SLR Datai05 ModellingiABNiStationsiMORICALC MOR Reverb 20220131.xisx [Staff crib]

20.0°C

0 0 0 0

Figure E14: Estimated reverberation times for Morley Staff Crib

Average absorption coefficier Air Attenuation dB/m

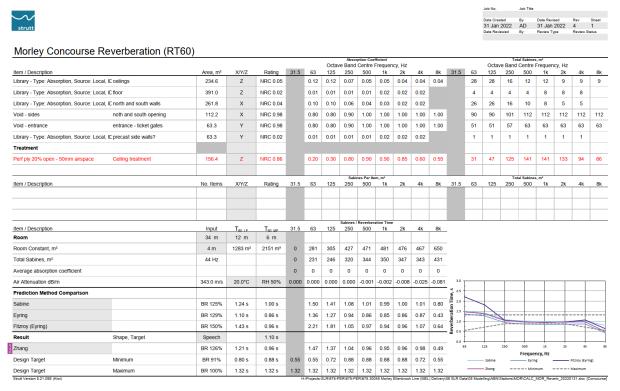


Figure E15: Estimated reverberation times of Morley Concourse

Job No.	Job Title			
Date Created	By	Date Revised	Rev	Sheet
31 Jan 2022	AD	09 Feb 2022	2	1
Date Reviewed	Ву	Review Type	Review St	atus

Morley Platform (under Bourn Av) Reverberation (RT60)

							Octav		Centre	fficient Frequen	cy, Hz					Octav		centre		cy, Hz		
Item / Description		Area, m²	X/Y/Z	Rating	31.5	63	125	250	500	1k	2k	4k	8k	31.5	63	125	250	500	1k	2k	4k	8k
Library - Type: Absorption, Source: L	ocal, IC Rough concrete roof	4662.0	Z	NRC 0.03			0.02	0.03	0.03	0.03	0.04	0.07				93	140	140	140	186	326	
Library - Type: Absorption, Source: L	ocal, IC Parquet in asphalt - floor	4662.0	Z	NRC 0.06			0.04	0.04	0.07	0.06	0.06	0.07				186	186	326	280	280	326	
Library - Type: Absorption, Source: L	ocal, IC Rough concrete east west walls	945.0	Y	NRC 0.03			0.02	0.03	0.03	0.03	0.04	0.07				19	28	28	28	38	66	
Void	noth and south opening	1110.0	X	NRC 0.98		0.80	0.80	0.90	1.00	1.00	1.00	1.00	1.00		888	888	999	1110	1110	1110	1110	1110
Treatment																						
									nes Per Ite									tal Sabine:				
Item / Description		No. Items	X/Y/Z	Rating	31.5	63	125	250	500	1k	2k	4k	8k	31.5	63	125	250	500	1k	2k	4k	8k
						-									-							-
								Sabines /	Reverber	ation Time												
Item / Description		Input	T _{60.LE}	T _{60 ME}	31.5	63	125	250	500	1k	2k	4k	8k									
Room		63 m	74 m	8 m																		
Room Constant, m ²		4 m	11379 m²	34965 m³	0	964	1328	1546	1900	1909	2228	3428	5519									
Total Sabines, m ²		18 Hz			0	889	1189	1361	1628	1635	1863	2634	3716									
Average absorption coefficient					0	0	0	0	0	0	0	0	0									
Air Attenuation dB/m		343.0 m/s	20.0°C	RH 50%	0.000	0.000	0.000	0.000	-0.001	-0.002	-0.008	-0.025	-0.081	10.0 9.5			_					
Prediction Method Comparison														s 8.5	/		\perp					
Sabine		BR 129%	4.44 s	3.45 s		6.34	4.74	4.14	3.46	3.45	3.02	2.14	1.52	on Time,	\angle							
Eyring		BR 131%	4.19 s	3.20 s		3.15	4.49	3.89	3.21	3.19	2.77	1.88	0.15	64at		—				$ \leftarrow $		
Arau-Puchades		BR 195%	10.31 s	5.29 s		5.07	11.36	9.25	5.21	5.37	4.15	2.28	0.15	3.0 2.5 2.5								
Result	Shape, Target	Speech		1.80 s										05 05								-
Zhang		BR 129%	4.29 s	3.32 s		3.14	4.59	3.99	3.33	3.31	2.91	2.05	0.04	6	3	125	250	500	1k	2k	4k	
Design Target	Minimum	BR 91%	1.31 s	1.44 s	0.90	0.90	1.17	1.44	1.44	1.44	1.44	1.17	0.90			Sabine	_	Freque Eyrin			Arau-Puchai	ides

Figure E16: Estimated reverberation times of Morley Platform (under Broun Av)

Appendix F: Schedules

Appendix G: ITP Strategy

Appendix H: IDC Review Schedule

Appendix I: IDC Certificates

Appendix J: Design Verification Certificates

Appendix K: Independent Verification Certificates

Appendix L: BCA Certification

Appendix M: DDA Certification

Appendix N: PTA Comments Review Register

Appendix O: RATM Extract

Appendix P: Third Party Approvals

Appendix Q: Concessions

Appendix R: Non-Compliance/Deviation Report

Appendix S: Designers Certificate of Compliance

Appendix T: Contractors Certificate of Compliance

Appendix U: Durability Assessment

Appendix V: Sustainability

Appendix W: RFIs

Appendix X: Project Interface Control Plan

Appendix Y: Project Hazard Log

Appendix Z: Safety in Design

Appendix AA: Human Factors

Appendix BB: Reliability, Availability, Maintainability

Appendix CC: Competency Assessment Confirmation Letter

