

# Albany hinterland prospective groundwater resources map Explanatory notes

Hydrogeological Map series Report no. HM 12 August 2017

# Albany hinterland prospective groundwater resources map

Explanatory notes

Department of Water Hydrogeological Map series Report no. HM 12 August 2017 Department of Water and Environmental Regulation 168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7000 Facsimile +61 8 6364 7001 National Relay Service 13 36 77 www.dwer.wa.gov.au

© Government of Western Australia August 2017

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water and Environmental Regulation.

ISBN (online) 978-1-925524-48-2 ISSN (online) 2208-4207

#### Acknowledgements

The Department of Water and Environmental Regulation would like to thank the following for their contribution to this publication: Sheryl Ryan, Andrew Maughan and Cahit Yesertener. Review and editing was undertaken by Alex Kern, Scott Macaulay, Jon-Philippe Pigois and Sandie McHugh. This project was made possible by the Western Australian Government's Royalties for Regions program.

#### **Recommended reference**

Ryan SA, Maughan A & Yesertener C 2017, *Albany hinterland prospective groundwater resources map explanatory notes,* Hydrogeological map series, HM12, Department of Water and Environmental Regulation, Government of Western Australia, Perth

Cover photograph: View from Albany port to the Albany hinterland.

#### Disclaimer

This document has been published by the Department of Water and Environmental Regulation. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Department of Water and Environmental Regulation and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein. Professional advice should be obtained before applying the information contained in this document to particular circumstances.

The Department of Water and Environmental Regulation was established by the Government of Western Australia on 1 July 2017. It is a result of the amalgamation of the Department of Environmental Regulation, Department of Water and the Office of the Environmental Protection Authority. This publication may contain references to previous government departments and programs. Please email the Department of Water and Environmental Regulation to clarify any specific information.

This publication is available at our website www.dwer.wa.gov.au or for those with special needs it can be made available in alternative formats such as audio, large print, or Braille.

# Contents

| 1  | Intro                    | duction                                                                                                                    | 1        |
|----|--------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|
| 2  | Abou                     | ut the map                                                                                                                 | 3        |
|    | 2.1<br>2.2<br>2.3        | Groundwater salinity<br>Groundwater recharge<br>Groundwater storage                                                        | 6        |
| 3  | Pros                     | pective groundwater resources                                                                                              | 9        |
|    | 3.1<br>3.2<br>3.3<br>3.4 | King River area<br>Kalgan River area<br>Manypeaks area<br>Nanarup area                                                     | 12<br>14 |
| A  | opend                    | dices                                                                                                                      | 19       |
|    | Appe                     | ndix A — Depth to basement mapping<br>ndix B — Groundwater recharge methodology<br>ndix C — Bores in the Albany hinterland | 23       |
| SI | norter                   | ned forms                                                                                                                  | 28       |
| G  | lossa                    | ry                                                                                                                         | 29       |
| R  | eferei                   | nces                                                                                                                       | 31       |

## Figures

| Figure 1 | Locality map and investigation area                | 3  |
|----------|----------------------------------------------------|----|
| Figure 2 | Generalised cross-section of the Albany hinterland |    |
| Figure 3 | King River area location map                       |    |
| Figure 4 | Kalgan River area location map                     |    |
| Figure 5 | Manypeaks area location map                        | 15 |
| Figure 6 | Nanarup area location map                          |    |

## Tables

| Table 1 | Stratigraphy and aquifers in the Albany hinterland | 4 |
|---------|----------------------------------------------------|---|
| Table 2 | Salinity categories and generalised uses           | 6 |
| Table 3 | Groundwater recharge estimates                     | 7 |
| Table 4 | Groundwater storage estimates                      |   |
|         |                                                    | - |

# 1 Introduction

With its relatively cooler, temperate climate, the Albany hinterland area is considered to have strong potential for agricultural expansion. Also, the area has been recognised in the *Great Southern regional blueprint* (GSDC 2014) as 'the most significant hotspot for competing water demand in the Great Southern'. Therefore, identifying prospective sources of potable and fit-for-purpose groundwater is essential to provide diversification options for industry and agriculture. The former Department of Water (the department, now the Department of Water and Environmental Regulation) recognised the importance of this in the *Great Southern regional water supply strategy* (DoW 2014a) with Strategy 4 – Investigate groundwater and surface water resources to support regional development.

In 2013 the department began an investigation in the Albany hinterland area to map prospective groundwater resources and provide information on water availability. This project is part of the South Coast Groundwater Investigation, made possible by the Government of Western Australia, Royalties for Regions groundwater availability, investigation and planning initiative.

These explanatory notes accompany the *Albany hinterland prospective groundwater resources map.* The map shows the location, spatial extent, water quality and conceptual hydrogeological cross-sections for four prospective groundwater resource areas:

- King River area
- Kalgan River area
- Manypeaks area
- Nanarup area

The map may be used to guide further investigations to validate the yield, quality and volume of potential water supplies. The map can be downloaded from the Department of Water and Environmental Regulation website at <u>www.dwer.wa.gov.au</u>.

# 2 About the map

The Albany hinterland prospective groundwater resources map shows the interpreted distribution of prospective resources across the investigation area. The Albany hinterland is located on Western Australia's south coast, extending north-west to north-east of the Albany urban area (Figure 1). The area is approximately 1200 km<sup>2</sup> in size and encompasses the localities of Torbay and Redmond in the west and Manypeaks in the east.

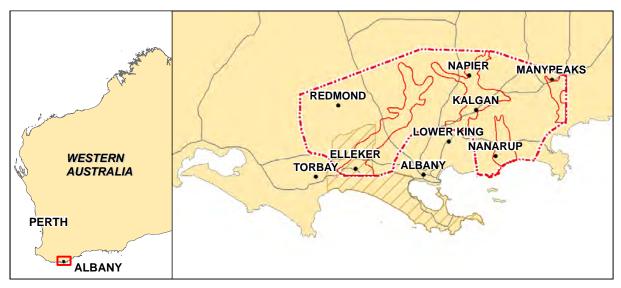



Figure 1 Locality map and investigation area

Four prospective groundwater resource areas were identified through an airborne electromagnetic (AEM) survey, interpretation of existing and new borehole data and surface geology mapping. These resources are the King River, Kalgan River, Manypeaks and Nanarup groundwater resource areas. Table 1 summarises stratigraphy and aquifer details and Figure 2 is a generalised hydrogeological cross-section though the study area.

Groundwater resources suitable for moderate- to large-scale use are stored in sandy sediments of the Werillup Formation, which were deposited within palaeochannels formed in pre-Tertiary drainages (Kern 2007). In the Albany hinterland, palaeochannels are present in the King River and Manypeaks areas where basement erosion is deeper than 0 m AHD.

In the Kalgan River area, the Pallinup Formation is the outcropping formation and is sandy through much of the area. It forms the Pallinup aquifer and provides a local groundwater supply to farmers. It is the watertable aquifer and is connected to the Kalgan River and its tributaries.

In the Nanarup area, several bores confirm the presence of two aquifers: a minor local, unconfined aquifer in the Nanarup Limestone and a palaeochannel infilled by

sand of the Werillup Formation, forming the Werillup aquifer. The unconfined aquifer is not monitored and its potential as a groundwater resource is unknown.

A detailed description of how the AEM data was used to develop a depth to basement layer is presented in Appendix A. The depth to basement layer identifies areas of pre-Tertiary erosion in the basement, and where palaeochannels have most likely formed. This layer is available from the department as an ArcGIS raster file. A table summarising details of all bores is given in Appendix B. Bore information is available from the Water Information Reporting (WIR) tool on the Department of Water and Environmental Regulation website at <u>www.dwer.wa.gov.au</u>.

|             | Geo                            | ology                                        | Hydrogeology                                       |                                           |
|-------------|--------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------|
| Age         | Stratigraphic unit             | Lithology                                    | Hydrostratigraphy                                  | Location                                  |
|             | Pallinup<br>Formation          | Silt, sand and clay                          | Pallinup aquifer, minor/local,<br>low productivity | King River,<br>Kalgan River,<br>Manypeaks |
|             | Werillup<br>Formation          |                                              |                                                    |                                           |
| Eocene      | Nanarup<br>Limestone<br>Member | Limestone, clay                              | Aquifer, minor/local                               | Nanarup                                   |
|             | Clay (informal<br>member)      | Clay, silt and sand                          | Impervious (aquitard), no groundwater resources    | All                                       |
|             | Sand (informal member)         | Sand and lignite                             | Werillup aquifer, highly productive                | King River,<br>Manypeaks,                 |
| ozoic       | Nornalup Complex               | Clay, gravel, sand<br>(weathered<br>bedrock) | Aquitard – local aquifer where sandy               | All                                       |
| Proterozoic |                                | Granite, mafic<br>gneiss (bedrock)           | Impervious, no groundwater resources (aquitard)    | All                                       |

#### Table 1Stratigraphy and aquifers in the Albany hinterland

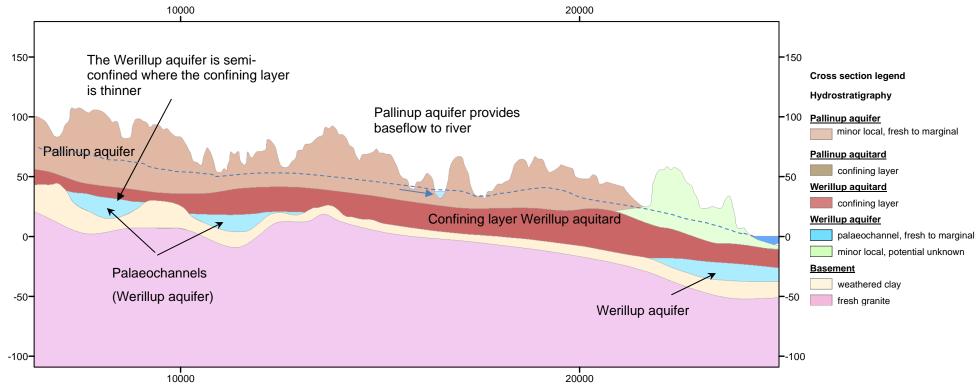



Figure 2 Generalised cross-section of the Albany hinterland

## 2.1 Groundwater salinity

Each prospective groundwater resource area has been subdivided into zones based on salinity categories. The department categorises salinity into five broad ranges, shown in Table 2, that indicate suitability for various generalised uses. Higher salinity water can often be used if appropriate technologies, crop selection and farming techniques are applied. The salinity categories are based on categories developed by Hem (1970) and are explained in greater detail in the department's *Water Resource Inventory 2014* (DoW 2014b). Most resources in the Albany hinterland are within the fresh to brackish categories.

Where possible, groundwater salinity values are derived from laboratory analysis and are expressed as total dissolved solids (TDS). Where that information is not available, salinity has been estimated from field electrical conductivity (EC) measurements based on Equation 1 (Freeze & Cherry 1979):

$$TDS = A \ x \ C \tag{Equation 1}$$

Where:

TDS = salinity expressed as Total Dissolved Solids (mg/L)

A = specific conductance conversion factor (0.55)

 $C = \text{conductance } (\mu s / cm)$ 

| Table 2 | Salinity categories and generalised uses |
|---------|------------------------------------------|
|         | Calling Calegories and generalised uses  |

|                            | Fresh<br>0–500<br>mg/L TDS | Marginal<br>500–1000<br>mg/L TDS | Brackish<br>1000–3000<br>mg/L TDS | Saline<br>3000–35 000<br>mg/L TDS | Hypersaline<br>>35 000<br>mg/L TDS |
|----------------------------|----------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| Potable water – desirable  |                            |                                  |                                   |                                   |                                    |
| Potable water – acceptable |                            |                                  |                                   |                                   |                                    |
| Irrigation                 |                            |                                  |                                   |                                   |                                    |
| Industry                   |                            |                                  |                                   |                                   |                                    |

## 2.2 Groundwater recharge

Groundwater recharge refers to the amount of water that enters an aquifer and is an important factor in determining the quantity of groundwater potentially available for abstraction. For the Albany hinterland groundwater resources, recharge was

considered to derive predominantly from rainfall and thus estimated as a proportion of mean annual rainfall. The recharge quantity is expressed in gigalitres per year (GL/yr) in this publication, where one gigalitre is the equivalent to 1 000 000 000 litres or 1 000 000 kilolitres.

Groundwater recharge is presented as a range of values for each groundwater area zone shown on the map. The range is determined from the minimum and maximum concentration of chloride ions in groundwater proportional to the concentration in rainfall.

Analysis for the nearby Albany Groundwater Area (GWA) demonstrates a declining total annual rainfall trend, with a reduction of about 13% observed over the 1969 – 2015 period (Ryan et al 2017). Mean annual rainfall calculated over the 1995 – 2015 period was chosen as representative of current conditions for the estimation of recharge volumes in this study area. Future climate analysis for the Albany GWA projects continuing rainfall decline and recent analysis of the relationship between rainfall and recharge (Ryan et al. 2017) shows that for every unit decline in rainfall, the reduction in recharge can double. Recharge estimates should be considered as indicative only due to the variability of climate and the uncertainties in estimation techniques.

Table 3 summarises groundwater recharge for each resource zone defined on the map. The full methodology used to calculate recharge and storage, along with the uncertainties in the calculations and methodology used, is described in Appendix B — Groundwater recharge methodology.

| Prospective groundwater resource | Area<br>(km²) | Mean annual<br>rainfall 1995–<br>2015 (mm) | Recharge<br>(% of annual<br>rainfall) | Recharge range<br>(GL/yr) |
|----------------------------------|---------------|--------------------------------------------|---------------------------------------|---------------------------|
| King River zone 1                | 50            | 795                                        | 3.9–14.2                              | 1.5–5.6                   |
| King River zone 2 (north)        | 15            | 750                                        | 2.0–10.6                              | 0.1–1.2                   |
| King River zone 2 (south)        | 12            | 795                                        | 2.0–10.6                              | 0.1–1.0                   |
| King River zone 3                | 16            | 750                                        | 1.4–3.2                               | 0.1–0.4                   |
| King River zone 4                | 1             | 795                                        | 2.0–3.0                               | 0.0–0.02                  |
| King River area total            | 94            |                                            |                                       | 1.8-8.2                   |
| Kalgan River zone 1              | 48            | 725                                        | 1.0-2.0                               | 0.1–0.7                   |
| Kalgan River zone 2              | 6             | 725                                        | 1.0-2.0                               | 0.0–0.1                   |
| Kalgan River zone 3              | 11            | 725                                        | 1.0-2.0                               | 0.0–0.2                   |
| Kalgan River zone 4              | 10            | 725                                        | 3.0–5.0                               | 0.1–0.4                   |
| Kalgan River area total          | 75            |                                            |                                       | 0.2–1.3                   |
| Manypeaks area total             | 20            | 700                                        | 5.0–9.0                               | 0.7–1.3                   |
| Nanarup area total               | 30            | 755                                        | 5.0-8.0                               | 1.2–1.7                   |

#### Table 3Groundwater recharge estimates

## 2.3 Groundwater storage

Groundwater storage refers to the total volume of water stored in an aquifer. It does not reflect the amount of water available for sustainable abstraction.

Total groundwater storage for each resource is listed in Table 4 and is expressed as gigalitres (GL). The aquifer storage volumes were estimated by considering the total area and average saturated thickness of the aquifer units, multiplied by an estimated specific yield value ranging from 0.1 to 0.2. Specific yields are based on specific yield values for similar units in the Perth Basin (De Silva et al. 2013). Aquifers with higher clay or silt content or finer grained sediments have a lower specific yield.

| Prospective<br>groundwater resource | Area<br>(km²) | Saturated<br>thickness<br>(m) | Specific yield | Storage<br>(GL) |
|-------------------------------------|---------------|-------------------------------|----------------|-----------------|
| King River zone 1                   | 50            | 19                            | 0.20           | 190             |
| King River zone 2 (north)           | 15            | 20                            | 0.20           | 60              |
| King River zone 2 (south)           | 12            | 7                             | 0.20           | 17              |
| King River zone 3                   | 16            | 11                            | 0.20           | 35              |
| King River zone 4                   | 1             | 15                            | 0.20           | 3               |
| King River (total)                  | 94            |                               |                | 305             |
| Kalgan River zone 1                 | 48            | 15                            | 0.10           | 72              |
| Kalgan River zone 2                 | 6             | 15                            | 0.10           | 9               |
| Kalgan River zone 3                 | 11            | 15                            | 0.10           | 17              |
| Kalgan River zone 4                 | 10            | 15                            | 0.10           | 15              |
| Kalgan River (total)                | 75            |                               |                | 113             |
| Manypeaks area (total)              | 20            | 35                            | 0.15           | 105             |
| Nanarup area (total)                | 30            | 8                             | 0.20           | 48              |

#### Table 4Groundwater storage estimates

# 3 Prospective groundwater resources

This section discusses area-specific information including our understanding of the geology and conceptual hydrogeology, estimated yields, water quality and what to expect when drilling.

## 3.1 King River area

#### Summary

The King River groundwater resource area is located in the western half of the investigation area (Figure 3). Its main groundwater resources are found in a palaeochannel that runs north-east to south-west. The palaeochannel, containing the Werillup aquifer, extends from the northern boundary into the Albany GWA, where the channel outflows to the ocean and is overlain by the Pallinup aquifer. Crosssections A–A' and B–B' show the distribution and hydrogeology of the Pallinup and Werillup aquifers. More than 50 bores have been drilled across the area, confirming the distribution and hydrogeology.

The Pallinup aquifer is the watertable aquifer and is separated from the underlying Werillup aquifer by a layer of black clay of the Werillup Formation. The Pallinup aquifer is low yielding; however, where it is sandy enough, it may be suitable for small-scale abstraction.

The Werillup aquifer is the main target aquifer for this area and contains fresh to brackish groundwater. Potential water supply from the Werillup aquifer ranges from 1.8 to 8.2 GL/yr.

## Pallinup aquifer

In the King River area, the Pallinup Formation is an unconfined aquifer of low permeability. It consists of unconsolidated silts interbedded with very fine- to fine-grained sand beds and discontinuous clay layers. At the surface, sediments are lateritic with minor sands and clays. Thicknesses range from 7 to 40 m, with an average thickness of 15 m. The formation is thin where depressions in the landscape occur and thinnest to the north-west of Phillips Brook.

The Pallinup aquifer has low permeability and may potentially provide a small groundwater supply, but only locally due to the aquifer's irregular nature. Data on the aquifer's properties is limited and no storage estimates have been made. Where a suitable supply has been determined, bores have been successfully constructed with yields ranging from 4 kL/d (< 0.1 L/s) to 130 kL/d (1.5 L/s). Water quality is marginal to brackish, with salinities ranging from 920 to 2900 mg/L TDS.

#### Werillup aquifer

The Werillup aquifer is a confined/semi-confined aquifer of moderate permeability, and is the most prospective aquifer in the King River area. The aquifer is overlain by a black carbonaceous clay of the Werillup Formation and is underlain by clayey weathered rock from the granitic basement. The Werillup aquifer consists of a grey to dark grey, fine to very coarsely grained sand with minor lignite and pyrite.

The aquifer is thickest in the central part of the palaeochannel with a maximum intersected thickness of 24 m. Clay content increases along the edges of the palaeochannel, as the channel sands become thinner.

The Werillup aquifer has the potential to provide an annual groundwater supply between 1.8 to 8.2 GL/yr. Airlift yields vary from 40 kL/d (0.5 L/s) along the channel edges to more than 1000 kL/d (> 12 L/s) in the central channel. Groundwater is fresh in the west of zone 1 where the overlying clay is thin and has a higher silt/sand to clay ratio, allowing greater leakage from the overlying Pallinup Formation. In the north, the Werillup aquifer is confined and has lower transmissivity, resulting in higher groundwater salinities and lower airlift yields. Water quality is freshest in the south (Werillup area zone 1) where the overlying clay is thinner, allowing higher recharge. The groundwater quality is marginal to brackish across the remaining zones.

In the north-west, a potential tributary of the palaeochannel has been interpreted from the AEM where the depth to basement is deeper than 0 m AHD. As no bore information is available in this area, the potential for fresh groundwater supply is unknown.

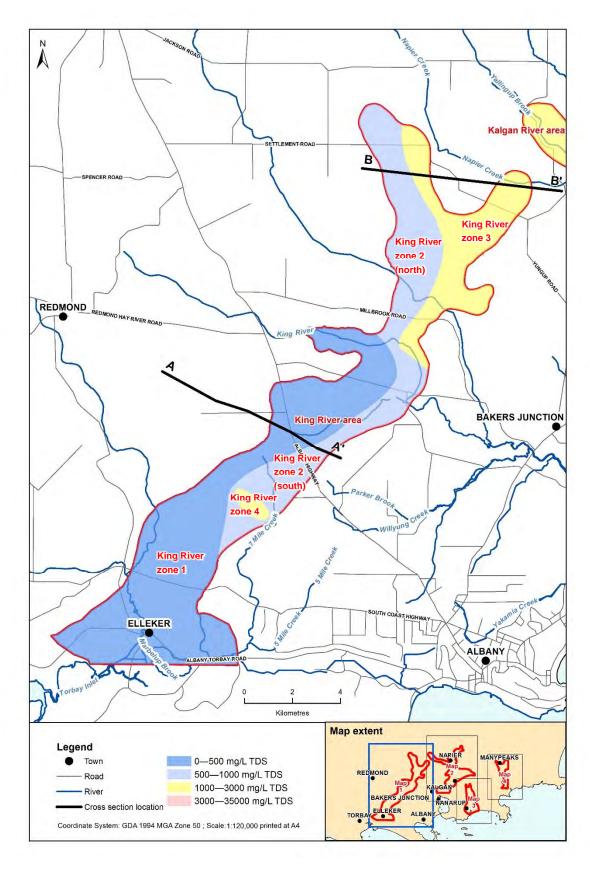



Figure 3 King River area location map

## 3.2 Kalgan River area

#### Summary

The Kalgan River groundwater resource area is located in the centre of the investigation area. Its groundwater resources are found within the Pallinup aquifer and follow the Kalgan River and its tributaries from the northern study area boundary to where the river terminates at Oyster Harbour (Figure 4). Cross-sections C–C' and D–D' show the distribution and hydrogeology of the Pallinup aquifer. There is minimal drilling in the area.

The Pallinup aquifer is the watertable aquifer and the target aquifer for this area. It is generally low yielding, however along the Kalgan River and its tributaries the Pallinup aquifer is sandier than in other areas of the hinterland, and may be suitable for small-to moderate-scale abstraction. It contains fresh to saline groundwater and potential water supply ranges from 0.2 to 1.3 GL/yr.

Sands from the Werillup Formation are present, but drilling indicates they are very thin (< 5 m thick) with no flows recorded. The Werillup Formation is not considered an aquifer in this area.

#### Pallinup aquifer

In the Kalgan River area the Pallinup Formation forms an unconfined aquifer of low permeability. The aquifer consists of unconsolidated silts interbedded with very fine-to fine-grained sands with discontinuous clay layers and infrequent fine- to medium-grained sandstones. Thicknesses range from 5 to 50 m, with the thinnest sequence underlying the river's main tributary. Sediment thickness is controlled by the current landscape, with sediments located alongside and underneath current drainage lines forming only a thin veneer (< 20 m thick). Where the Pallinup Formation outcrops, the sediments are lateritic with minor sands and clays. It is underlain by a black carbonaceous clay of the Werillup Formation, or is directly underlain by weathered or unweathered granitic bedrock.

The Pallinup aquifer has the potential to provide 0.2 to 1.3 GL/yr, although water quality may be highly variable. Where the Pallinup aquifer is strongly connected to the Kalgan River (Kalgan River zones 1 and 2), streamflow may recharge groundwater in some reaches and water quality is expected to be brackish to saline. Salinity in the Kalgan River varies seasonally but it is largely saline; salinity of more than 10 000 mg/L TDS is recorded during the summer months.

The Pallinup aquifer discharges to the Napier Creek where the groundwater and surface water systems are connected in Kalgan River zone 3. The Pallinup aquifer groundwater quality is expected to be marginal to brackish, similar to the Napier Creek salinity range of 1000 to 2000 mg/L.

There are few known bores in the Kalgan River area. In the east, several attempts to construct bores into the Pallinup aquifer have been made. Airlift measurements could not be attained at some drill sites due to insufficient flows. Where airlift yields could

be measured they were about 40 kL/d (0.5 L/s). Groundwater is fresh to marginal, with salinity around 1100 mg/L TDS calculated from EC measurements.

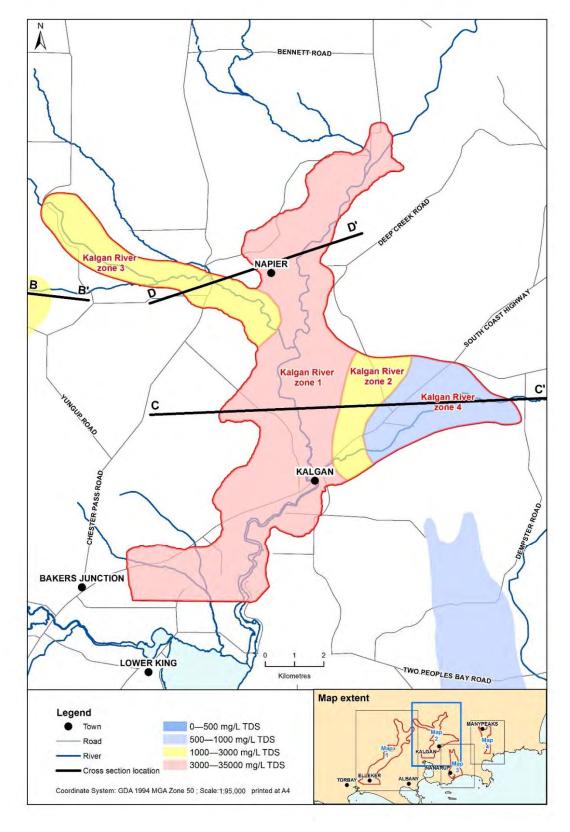



Figure 4 Kalgan River area location map

## 3.3 Manypeaks area

#### Summary

The Manypeaks groundwater resource area is located at the eastern extent of the investigation area (Figure 5). Its groundwater resources are found in the Werillup and Pallinup aquifers in a palaeochannel located south of the Manypeaks townsite. Only the western extent of the palaeochannel falls within the investigation area, however the depth to basement data indicates the palaeochannel may meander from the north to the south-east, possibly terminating at the coastline either near Normans Beach or where King Creek meets the coastline. Further work is required to define the palaeochannel extent. Cross-section E-E' shows the distribution and hydrogeology of the Pallinup and Werillup aquifers.

The Pallinup aquifer is semi-confined and connected to the underlying Werillup aquifer. For the purposes of this map, it has been treated as one resource and is referred to as the Werillup aquifer.

The Werillup aquifer is the main resource in this area and contains fresh to marginal groundwater. It is a moderate- to high-yielding aquifer with a potential water supply estimate of 0.7 to 1.3 GL/yr, based on the currently mapped extent.

## Pallinup aquifer

In the Manypeaks area, the Pallinup Formation forms a semi-confined aquifer of low to moderate permeability. It consists of silty clays and siltstones overlying a locally clayey, fine- to coarse-grained pale brown lateritised sandstone, which forms the Pallinup aquifer. Laterite is common at the top where the sediments are above the watertable. Thicknesses range from 39 to 53 m, with an average thickness of 46 m. The clay and siltstone is generally around 30 m thick, with the base of the clay at about 60 m AHD. The sandstone is coarser and less clayey in the centre of the palaeochannel.

The Pallinup aquifer is connected to the underlying Werillup aquifer.

Flows of approximately 86 kL/d (1 L/s) were recorded during exploratory drilling, and the groundwater increases in salinity with depth, ranging from fresh to brackish.

Potential water supply and storage estimates for the Pallinup aquifer have been combined with estimates for the Werillup aquifer, given they are considered to be the same resource in this area.

## Werillup aquifer

The Werillup aquifer is a semi-confined aquifer of moderate permeability and is overlain by the Pallinup aquifer. It consists of a basal fine- to coarse-grained black friable sandstone with minor silt. Pyrite and lignite are common. The aquifer is underlain by the black carbonaceous clay typically associated with the Werillup Formation. A fine- to coarse-grained silty sand layer directly underlies the clay and in places is connected to a sandy saprolitic layer of weathered basement. When combined with the overlying Pallinup aquifer, saturated thicknesses are around 35 m in the central channel.

The Werillup aquifer has the potential to provide an annual groundwater supply of 0.7 to 1.3 GL/yr. Airlift yields increase with depth, varying from 34 kL/d (0.4 L/s) at shallower depths to 302 kL/d (3.5 L/s) near the base of the aquifer. Groundwater quality is generally in the marginal (500–1000 mg/L TDS) category, and becomes more saline with depth (up to 1500 mg/L TDS).

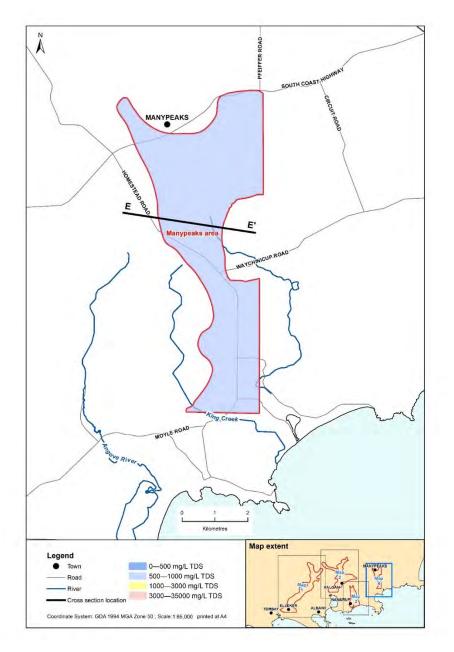



Figure 5 Manypeaks area location map

## 3.4 Nanarup area

#### Summary

The Nanarup groundwater resource area is located along the southern coastline of the investigation area east of Oyster Harbour (Figure 6). Cross section F-F' shows the distribution and hydrogeology of the Werillup aquifer. Drilling confirms the Werillup aquifer is present within the palaeochannel beneath the clay of the Werillup Formation, though a thinner aquifer also associated with the Werillup Formation is present above the clay.

An outcropping limestone unit identified as the Nanarup Limestone Member of the Werillup Formation (Quilty 1969,1981) and a thin black sandstone make up the watertable aquifer. This aquifer is separated from the lower confined Werillup aquifer by a black clay layer. There is limited bore information available for this watertable aquifer and no estimates have been made during this investigation on the viability of this layer as a groundwater resource.

Groundwater is confined in the palaeochannel and it is the target aquifer in this area. The aquifer is less than 10 m thick, contains fresh to marginal groundwater and has the potential to produce 1.2 to 1.7 GL/yr.

#### Werillup aquifer

The Werillup aquifer is a semi-confined to confined low-yielding aquifer. It consists of interbedded finely grained black sands, silty sands and silts. The aquifer is overlain by the black carbonaceous clay typically associated with the Werillup Formation. The aquifer is thin, ranging in thickness from 5 to 10 m, with an average thickness of 8 m. It is underlain by a saprolitic silt layer on a granite basement.

The Werillup aquifer has the potential to provide an annual groundwater supply of 1.2 to 2.7 GL/yr. However, airlift yields from bores that have been drilled to date are low, varying from 34 kL/d (0.4 L/s) to 190 kL/d (2.2 L/s). Groundwater is generally marginal (500–1000 mg/L TDS), but locally it can be fresh (< 500 mg/L TDS). The aquifer may be suitable for local supply.

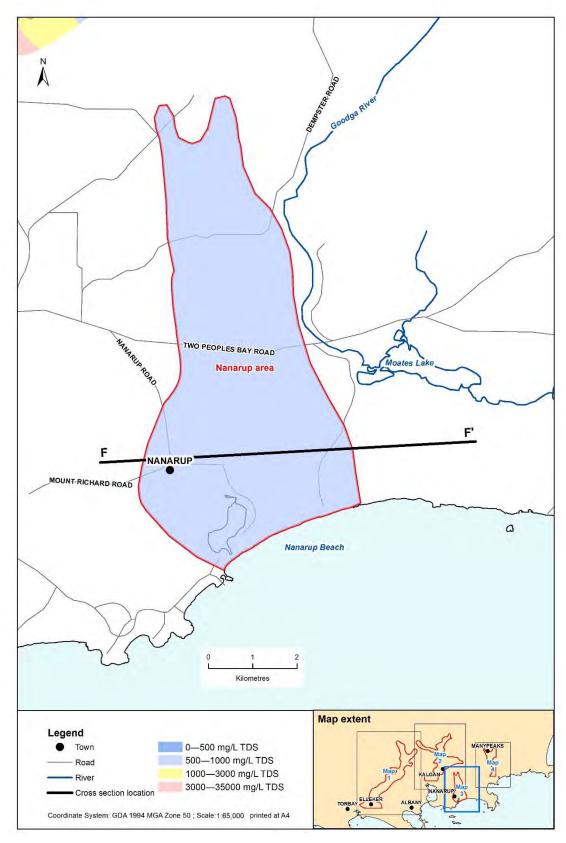



Figure 6 Nanarup area location map

# Appendices

## Appendix A – Depth to basement mapping

In 2013 an AEM survey was carried out using the TEMPEST system (Fugro 2013). The survey's aim was to identify potential water resources by determining the depth to basement and locating high conductivity units representing a confining clay layer in the channels. A total of 2137 km was flown in 178 lines covering an area of 8810 km<sup>2</sup>. The survey was conducted at a line spacing of 600 m over the hinterland and 300 m over the Albany GWA, where higher resolution was required (Fugro 2013).

An initial inversion of the raw AEM data carried out by Geoscience Australia indicated several potential channel areas (Figure A1). However, due to the limited drilling data and the clayey nature of both the Pallinup and Werillup formations, it was difficult to interpret the geometry of the resources. Following on from this, in November 2014 the department conducted a groundwater investigation program across 16 sites in the prospective groundwater areas identified by the AEM survey.

By mapping out the depth to basement from the AEM, palaeochannels formed by pre-Tertiary erosion could be identified.

In 2016, Mira Geoscience was commissioned to carry out a second geologically constrained inversion of the data incorporating the results from the 2014 drilling program and the revised stratigraphic model of the area. The results showed that the top unsaturated Pallinup sediments were generally resistive (<10 mS/m). A more conductive unit directly underlying this (50–>150 mS/m) correlated well with the clay member of the Werillup Formation. Bedrock/basement had a low resistivity, averaging 1.2 mS/m.

A depth to basement layer covering the northern domain was developed by doing an unconstrained layered earth inversion on the initial data from the TEMPEST AEM survey (Figure A2). The geologically constrained inversions were unsuccessful due to the highly heterogeneous nature of the sediments and produced geologically implausible models. Instead a manual interpretation of the depth to basement from the VPem1D model has been used to develop the final layer (Figure A3).

The full methodology and results are documented in the *Interpretation of TEMPEST airborne electromagnetic data from the Albany hinterland, Western Australia* (Mira Geoscience 2016).

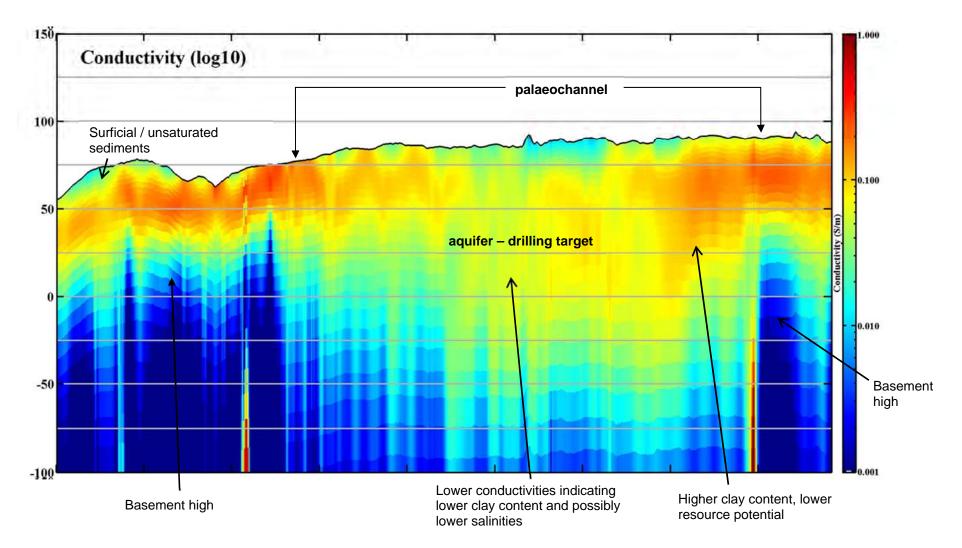
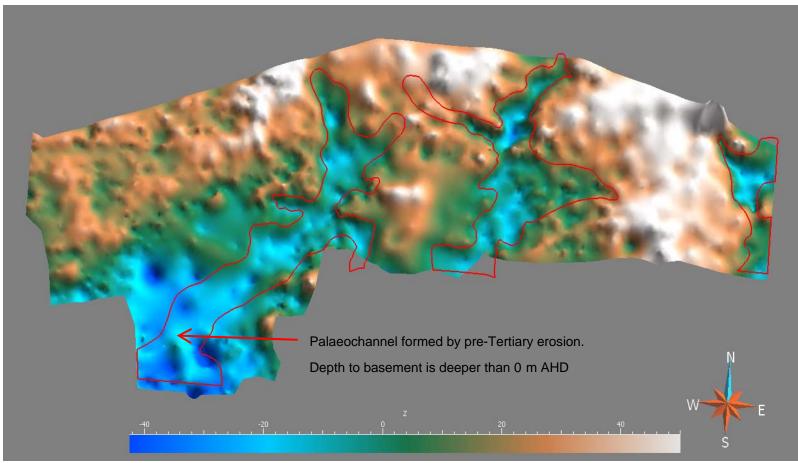
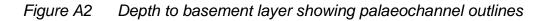





Figure A1 Example AEM depth slice in the Manypeaks area



Depth to basement scale. White represents basement highs and dark blue represents basement lows.



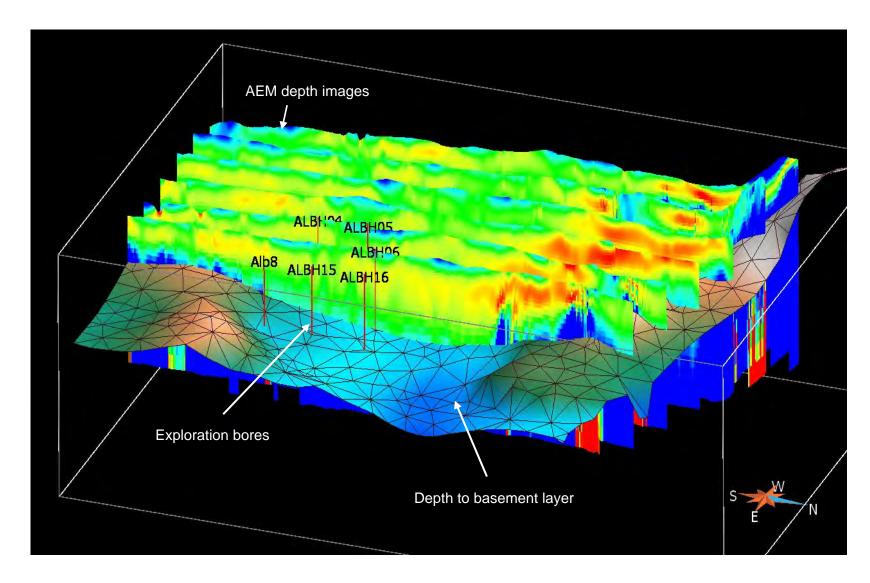



Figure A3 3D image of AEM survey with depth to basement layer and bore information in Manypeaks

## Appendix B — Groundwater recharge methodology

Recharge calculations for the investigation were based on the chloride mass balance method (CMB). This method assumes chloride is highly soluble and is considered to be conservative so the only source of chloride in the groundwater is from rainfall deposition, chloride is not lost to evapotranspiration or precipitated to the aquifer material, and no chloride is gained through dissolution from the aquifer material. It is the most widely used method for estimating groundwater recharge in Australia and is well documented in the literature (Leany et al. 2011). The CMB method estimates net groundwater recharge and is applicable for steady-state conditions. The unknowns in the CMB equation are annual rainfall, chloride deposition rate at the ground surface and the chloride concentration of the groundwater, provided losses to surface runoff are insignificant, which has been assumed for this study. There was insufficient data for hydrograph analysis or other recharge calculation methods.

Rainfall chloride concentrations were estimated based on the spatial variation in rainfall chloride, with distance from the coastline, observed in rainfall chloride sampling undertaken at eight sites across the Albany GWA in 2013 (Table B1). This approach was supported by observation of Hingston and Gailitis (1976), demonstrating decreasing rainfall chloride deposition with increasing distance inland. Rainfall data was obtained from the SILO database (SILO 2016) for representative locations within the prospective groundwater areas.

| Site                  | Easting | Northing | Average annual<br>rainfall 1990–2015<br>(mm) | Rainfall<br>Chloride<br>(mg/L) |
|-----------------------|---------|----------|----------------------------------------------|--------------------------------|
| King River south-west | 573047  | 6132210  | 795                                          | 17                             |
| King River north-east | 577706  | 6143262  | 750                                          | 17                             |
| Kalgan                | 591419  | 6143135  | 725                                          | 17                             |
| Nanarup               | 595874  | 6131998  | 755                                          | 20                             |
| Manypeaks             | 609704  | 6142935  | 700                                          | 17                             |

Table B1 SILO rainfall locations and 1990–2015 average annual rainfall totals

Equation 2 was used to calculate the chloride mass balance (Leaney et al. 2011). Chloride concentration data from bore chemistry samples were analysed for each zone and used to estimate recharge to the aquifers as a proportion of annual rainfall. Rainfall chloride concentration was estimated from samples collected in the Albany GWA in 2013, adjusted for each area based on distance from the coast.

$$R = P \times C_p / C_{gw}$$

Equation 2

Where:

- R = recharge rate (mm/yr)
- P = average annual precipitation (mm/yr)
- C<sub>p</sub> = chloride concentration in rainfall (mg/L)
- C<sub>gw</sub> = chloride concentration in groundwater (mg/L)

# Table B2Rainfall depth, rainfall chloride concentration, groundwater chloride<br/>concentration and calculated estimated recharge based on CMB

| Resource<br>area | Average<br>annual rainfall<br>(P) (mm) | Rainfall<br>chloride<br>concentration<br>(mg/L) | Bore AWRC*<br>number | Bore site<br>name | Chloride<br>concentration<br>(mg/L) | Recharge<br>(mm) | Recharge %<br>as<br>proportion<br>of P |
|------------------|----------------------------------------|-------------------------------------------------|----------------------|-------------------|-------------------------------------|------------------|----------------------------------------|
|                  |                                        |                                                 | 60212736             | RWB3              | 320                                 | 39.84            | 5.31                                   |
|                  |                                        |                                                 | 60200176             | RWB8              | 180                                 | 70.83            | 9.44                                   |
|                  |                                        |                                                 | 60212742             | RWB12             | 200                                 | 63.75            | 8.50                                   |
|                  |                                        |                                                 | 60210010             | RWB13             | 360                                 | 35.42            | 4.72                                   |
|                  |                                        |                                                 | 60300019             | RWB15             | 440                                 | 28.98            | 3.86                                   |
|                  |                                        |                                                 | 60300024             | RWB20             | 430                                 | 29.65            | 3.95                                   |
|                  |                                        |                                                 | 60212647             | RWB21             | 190                                 | 67.11            | 8.95                                   |
|                  | 750                                    | 17                                              | 60200202             | RWB22             | 210                                 | 60.71            | 8.10                                   |
| King             |                                        |                                                 | 60200203             | RWB23             | 120                                 | 106.25           | 14.17                                  |
|                  |                                        |                                                 | 60200211             | RWB31             | 160                                 | 79.69            | 10.63                                  |
|                  |                                        |                                                 | 60200207             | RWB27             | 860                                 | 14.83            | 1.98                                   |
|                  |                                        |                                                 | 60200210             | RWB30             | 1000                                | 12.75            | 1.70                                   |
|                  |                                        |                                                 | 60200214             | RWB33             | 530                                 | 24.06            | 3.21                                   |
|                  |                                        |                                                 | 60200220             | RWB39             | 1100                                | 11.59            | 1.55                                   |
|                  |                                        |                                                 | 60212640             | RWB40             | 1200                                | 10.63            | 1.42                                   |
|                  |                                        |                                                 | 60300023             | RWB19             | 630                                 | 20.24            | 2.70                                   |
|                  | 725                                    | 17                                              | 60218239             | ALBH10            | 491                                 | 24.76            | 3.46                                   |
| Kalgan           |                                        |                                                 | 60219103             | ALB4A             | 355                                 | 34.24            | 4.79                                   |
|                  |                                        | 20                                              | 60219101             | ALB2B             | 259                                 | 58.30            | 7.72                                   |
| Nanarup          | 755                                    |                                                 | 60218238             | ALBH09            | 310                                 | 48.71            | 6.45                                   |
|                  |                                        |                                                 | 60219102             | ALB3              | 370                                 | 40.81            | 5.41                                   |
|                  |                                        |                                                 | 60218234             | ALBH05            | 337                                 | 44.81            | 5.93                                   |
|                  | 700                                    | 4-                                              | 60218245             | ALBH16            | 478                                 | 31.59            | 4.18                                   |
| Manypeaks        | 700                                    | 17                                              | 60218233             | ALBH04            | 501                                 | 30.14            | 3.99                                   |
|                  |                                        |                                                 | 60219109             | ALB8              | 595                                 | 25.38            | 3.36                                   |

AWRC\* Australian Water Resources Council

The CMB recharge estimation method is most reliable when groundwater chloride samples are obtained from the watertable, and under steady state conditions, and this constraint could not be assured for all samples. Chemistry samples assessed were generally within resource boundaries, however given the sparse historical data it was decided that all available groundwater chloride data would be assessed and then the results would be interpreted with consideration of the limitations. Table B2 contains the rainfall depth and chloride concentration, groundwater chloride concentration data and range of estimated CMB recharge.

Equation 3

The four potential groundwater areas were subdivided into salinity class zones, based on available data, where values ranged greater than one salinity class. The Manypeaks and Nanarup areas have only one salinity zone and one rainfall station. King River has several salinity zones and a rainfall station in the north and south. Zoning in the Kalgan River area has been based on surface water salinity and two rainfall stations.

Recharge has been calculated for each salinity zone using Equation 3. The final recharge estimate value chosen for each zone or area was determined from assessment of how the available data was considered to be representative, or varied from the assumptions, for the CMB approach and with consideration of the salinity and hydrogeological processes in each area. In areas where several samples were available, the minimum and maximum chloride values were used to define a range of groundwater recharge as a proportion of rainfall for each resource zone. The ranges for each zone are outlined in Table B3 and the recharge ranges expressed in gigalitres per year are in Table in Section 2.2.

$$R = P_a x A_f x F$$

Where

R = calculated groundwater recharge (kL/yr)

P<sub>a</sub> = average annual rainfall (m/yr)

 $A_f$  = the surface area covered by the formation (m<sup>2</sup>)

F = the recharge rate as a percentage of average annual rainfall (%)

| Zone                | Min<br>recharge as<br>% rainfall | Max<br>recharge as<br>% rainfall | Median<br>recharge as<br>% rainfall | Mean<br>recharge as<br>% rainfall | Range %<br>rainfall |
|---------------------|----------------------------------|----------------------------------|-------------------------------------|-----------------------------------|---------------------|
| King River Zone 1   | 3.9%                             | 14.2%                            | 8.1%                                | 7.4%                              | 3.9–14.2            |
| King River Zone 2   | 2.0%                             | 10.6%                            | 6.3%                                | 6.3%                              | 2.0–10.6            |
| King River Zone 3   | 1.4%                             | 3.2%                             | 1.6%                                | 2.0%                              | 1.4–3.2             |
| King River Zone 4   | 2.7%                             | 2.7%                             | 2.7%                                | 2.7%                              | 2.0–3.0             |
| Kalgan River zone 1 | 1%                               | 2%                               | n/a                                 | n/a                               | 1.0-2.0             |
| Kalgan River zone 2 | 1%                               | 2%                               | n/a                                 | n/a                               | 1.0-2.0             |
| Kalgan River zone 3 | 1%                               | 2%                               | n/a                                 | n/a                               | 1.0-2.0             |
| Kalgan River zone 4 | 3%                               | 5%                               | 4%                                  | 4%                                | 3.0–5.0             |
| Nanarup zone        | 5%                               | 8%                               | 7%                                  | 7%                                | 5.0-8.0             |
| Manypeaks zone      | 3%                               | 5%                               | 3%                                  | 4%                                | 3.0–5.0             |

| Table Do Talinali recharge percentages for each recourse zone | Table B3 | Rainfall recharge percentages for each resource zone |
|---------------------------------------------------------------|----------|------------------------------------------------------|
|---------------------------------------------------------------|----------|------------------------------------------------------|

## Appendix C – Bores in the Albany hinterland

The groundwater potential of the Albany hinterland has previously been investigated by Diamond (2001) and Kern (2007). The investigations were primarily desktop studies that collated known private and public bore data with older geophysical data obtained by the Geological Survey of Western Australia. While the studies were focused on a broader area than this investigation, the four areas outlined in this study were all identified as potential groundwater resources.

More than 170 bores associated with the Albany hinterland are found in the department's Water Information database (WIN/WIR). However, most of these bores do not have geological logs and are too shallow to provide enough information. Groundwater yield and salinity data is available for many bores, but for most bores it is uncertain which aquifer the information is referring to. Bores with geological logs and their locations are given in Table C1.

| AWRC*     | Bore     | Easting  | Northing | AWRC      | Bore   | Easting  | Northing |
|-----------|----------|----------|----------|-----------|--------|----------|----------|
| reference | name     |          |          | reference | name   |          |          |
| 60310639  | 1965_03P | 566790   | 6125517  | 60210582  | 641    | 577010.7 | 6129155  |
| 60318500  | 1976_01A | 566625.6 | 6126139  | 60210580  | 611    | 577795   | 6127659  |
| 60318501  | 1977_01  | 567096.6 | 6129077  | 60210120  | MHC11B | 577006.6 | 6125392  |
| 60318502  | 1977_02C | 567942.6 | 6129067  | 60210122  | MHC12A | 577007   | 6125392  |
| 60218002  | 1978_02  | 566202.6 | 6126297  | 60210136  | MHC17A | 577523.9 | 6126172  |
| 60318506  | 1978_04L | 561669.6 | 6128546  | 60210151  | MHC23A | 578669   | 6125785  |
| 60310162  | 1978_05E | 570691.6 | 6127247  | 60210152  | MHC23B | 578669   | 6125785  |
| 60310636  | 1978_06F | 569129.6 | 6126364  | 60210153  | MHC23C | 578669   | 6125785  |
| 60310198  | 1978_07H | 565993.6 | 6127547  | 60210105  | MHC3A  | 577565   | 6125403  |
| 60310654  | 1978_08D | 573167.7 | 6126877  | 60210194  | MHC3B  | 577564   | 6125403  |
| 60310666  | 1978_091 | 565568.6 | 6128377  | 60212734  | RWB01  | 572119   | 6135760  |
| 60310667  | 1978_10J | 565696.5 | 6129787  | 60212735  | RWB02  | 570700.2 | 6135105  |
| 60318512  | 1978_19M | 564158   | 6125903  | 60212736  | RWB03  | 569378.3 | 6135537  |
| 60310164  | 1978_21  | 569134.6 | 6126848  | 60212737  | RWB04  | 568113   | 6136191  |
| 60318513  | 1978_22  | 566891.6 | 6128324  | 60200174  | RWB05  | 574181.6 | 6134688  |
| 60318514  | 1978_23  | 566121.6 | 6128267  | 60212738  | RWB06  | 573581   | 6133547  |
| 60310123  | 1978_24  | 565407.6 | 6125857  | 60200175  | RWB07  | 573159.2 | 6135912  |
| 60310124  | 1978_25  | 567135.6 | 6125577  | 60200176  | RWB08  | 573458.2 | 6135059  |
| 60310199  | 1978_27  | 568592.6 | 6127647  | 60212739  | RWB09  | 573882   | 6136832  |
| 60310163  | 1978_28  | 568765.6 | 6126825  | 60212740  | RWB10  | 572817   | 6136934  |
| 60318516  | 1978_29  | 566621.6 | 6126139  | 60212741  | RWB11  | 572149.6 | 6136765  |
| 60318517  | 1978_30  | 565932.6 | 6127698  | 60212742  | RWB12  | 572491.2 | 6134220  |
| 60318518  | 1978_31  | 566885.6 | 6127523  | 60210010  | RWB13  | 571718.2 | 6132566  |
| 60319479  | 1994_01  | 573866.5 | 6131452  | 60300018  | RWB14  | 570354   | 6130627  |
| 60319478  | 1994_02  | 573135.1 | 6131457  | 60300019  | RWB15  | 571482.4 | 6130642  |
| 60319475  | 1994_03  | 571892.9 | 6132203  | 60300020  | RWB16  | 571815   | 6130634  |

| Table C1 | Bores with geological logs in the Albany hinter   | bnel |
|----------|---------------------------------------------------|------|
|          | bores with geological logs in the Albany filliter | ianu |

| AWRC*     | Bore     | Easting  | Northing | AWRC      | Bore   | Easting  | Northing |
|-----------|----------|----------|----------|-----------|--------|----------|----------|
| reference | name     | Ŭ        | Ŭ        | reference | name   | Ŭ        | Ū        |
| 60319477  | 1994_04  | 571896.1 | 6131537  | 60300021  | RWB17  | 571096   | 6130619  |
| 60319476  | 1994_05  | 571610.4 | 6131852  | 60300022  | RWB18  | 570705   | 6130646  |
| 60219104  | 1994_05A | 572016   | 6132855  | 60300023  | RWB19  | 570745.6 | 6131562  |
| 60319470  | 1994_06  | 571896.4 | 6132199  | 60300024  | RWB20  | 570657.2 | 6131912  |
| 60319467  | 1994_08  | 572508.8 | 6132551  | 60212647  | RWB21  | 574538   | 6135599  |
| 60319464  | 1994_09  | 572777   | 6133575  | 60200202  | RWB22  | 575289.1 | 6136296  |
| 60319468  | 1994_10  | 573188.7 | 6132810  | 60200203  | RWB23  | 576071   | 6137132  |
| 60319472  | 1994_11  | 573487   | 6132268  | 60200204  | RWB24  | 576967   | 6138247  |
| 60319471  | 1994_12  | 572741.6 | 6132146  | 60200205  | RWB25  | 575623   | 6138443  |
| 60319463  | 1994_13  | 571902.6 | 6133583  | 60200206  | RWB26  | 576213   | 6138378  |
| 60319462  | 1994_14  | 570666.5 | 6133602  | 60200207  | RWB27  | 577594   | 6137901  |
| 60319465  | 1994_15  | 570659   | 6132820  | 60200208  | RWB28  | 577545   | 6137122  |
| 60319491  | 1994_16  | 570654.8 | 6132154  | 60200209  | RWB29  | 578146   | 6137278  |
| 60319473  | 1994_17  | 570879.4 | 6131557  | 60200210  | RWB30  | 578298   | 6138947  |
| 60319474  | 1994_18  | 571203.1 | 6131553  | 60200211  | RWB31  | 577151   | 6137290  |
| 60319480  | 1994_19  | 571223.6 | 6133883  | 60200213  | RWB32  | 580598   | 6140518  |
| 60212260  | Alb2     | 595300   | 6128800  | 60200214  | RWB33  | 580434   | 6139498  |
| 60219102  | Alb3     | 598380   | 6134770  | 60200215  | RWB34  | 580365   | 6139273  |
| 60219103  | Alb4     | 598400   | 6140300  | 60200216  | RWB35  | 580493   | 6139699  |
| 60219104  | Alb5     | 571980   | 6132806  | 60200217  | RWB36  | 580552   | 6139909  |
| 60319481  | Alb5     | 571980   | 6132806  | 60200218  | RWB37  | 580606   | 6140091  |
| 60219109  | Alb8     | 608550   | 6140550  | 60200219  | RWB38  | 581665   | 6140082  |
| 60218232  | ALBH01   | 563064   | 6141188  | 60200220  | RWB39  | 579534   | 6140578  |
| 60310691  | ALBH02   | 562975   | 6138788  | 60212640  | RWB40  | 580349   | 6141803  |
| 60310692  | ALBH03   | 564788   | 6132877  | 60212648  | RWB40a | 580347   | 6141803  |
| 60218233  | ALBH04   | 607383   | 6140847  | 60200221  | RWB41  | 584074   | 6138147  |
| 60218234  | ALBH05   | 607382   | 6141513  | 60200222  | RWB42  | 581192   | 6143112  |
| 60218235  | ALBH06   | 607964   | 6141824  | 60200223  | RWB43  | 581882   | 6144033  |
| 60218236  | ALBH07   | 597096   | 6129065  | 60200224  | RWB44  | 581591   | 6144465  |
| 60218237  | ALBH08   | 597059   | 6130263  | 60212649  | RWB45  | 581690   | 6144568  |
| 60218238  | ALBH09   | 596467   | 6128876  | 60212650  | RWB45a | 581691   | 6144568  |
| 60218239  | ALBH10   | 598969   | 6144848  | 60200225  | RWB46  | 577158   | 6137755  |
| 60218240  | ALBH11   | 597161   | 6143481  | 60212651  | RWB46a | 577158   | 6137755  |
| 60218241  | ALBH12   | 594162   | 6140610  | 60212652  | RWB47  | 577858   | 6136813  |
| 60218242  | ALBH13   | 597199   | 6141404  | 60212653  | RWB47a | 577858   | 6136813  |
| 60218243  | ALBH14   | 597196   | 6140848  | 60212654  | RWB48  | 576314.8 | 6135278  |
| 60218244  | ALBH15   | 608591   | 6141205  | 60210581  | 631    | 578209.7 | 6127611  |
| 60218245  | ALBH16   | 608566   | 6141898  | 60210579  | 609    | 576686.6 | 6128703  |

AWRC\* Australian Water Resources Council

# Shortened forms

| AEM  | airborne electromagnetic (survey)                                                   |
|------|-------------------------------------------------------------------------------------|
| AHD  | Australian Height Datum                                                             |
| AWRC | Australian Water Resources Council                                                  |
| bgl  | below ground level                                                                  |
| CMB  | chloride mass balance                                                               |
| DoW  | Department of Water                                                                 |
| EC   | electrical conductivity                                                             |
| SILO | Scientific Information for Land Owners                                              |
| TDS  | total dissolved solids                                                              |
| WIN  | Water Information Database (Department of Water and Environmental Regulation)       |
| WIR  | Water Information Reporting tool (Department of Water and Environmental Regulation) |

# Glossary

| AHD                        | Australian Height Datum; equivalent to Mean Sea Level                                                                                                                                         |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alluvium (alluvial)        | detrital material that is transported by streams and rivers and deposited                                                                                                                     |
| aquifer                    | a geological formation or group of formations able to receive,<br>store and transmit significant quantities of water                                                                          |
| aquitard                   | a geologic formation, group of formations, or part of a formation with relatively low permeability which restricts groundwater movement                                                       |
| artesian aquifer<br>(bore) | a confined aquifer under sufficient pressure that the water would rise in a bore above the ground surface                                                                                     |
| baseflow                   | the portion of river and stream flow coming from groundwater discharge                                                                                                                        |
| bore                       | small diameter well, usually drilled with machinery                                                                                                                                           |
| confined aquifer           | an aquifer lying between confining strata of low permeability so that the water in the aquifer cannot flow vertically                                                                         |
| confining bed              | sedimentary bed of very low hydraulic conductivity – see aquitard                                                                                                                             |
| estuary<br>(estuarine)     | the seaward or tidal mouth of a river where fresh water comes into contact with sea water                                                                                                     |
| formation<br>(geological)  | a group of rocks or sediments that have certain<br>characteristics in common and that were deposited about the<br>same geological period, and constitute a convenient unit for<br>description |
| gaining stream             | a stream or reach of stream with flow being increased by inflow of groundwater                                                                                                                |
| groundwater                | water that occupies the pores and crevices of rock or soil beneath the land surface                                                                                                           |
| groundwater flow           | movement of water in the saturated zone                                                                                                                                                       |
| groundwater<br>recharge    | action of water percolating through the soil/ground to replenish an aquifer                                                                                                                   |
| lateritised<br>(lateritic) | a surficially formed deposit consisting mostly or entirely of<br>iron or aluminium oxides and hydroxides                                                                                      |
| lithology                  | description of the physical characteristics of a rock unit                                                                                                                                    |
| losing stream              | a stream that that loses water to (or recharging) the groundwater system as it flows downstream                                                                                               |
| member<br>(geological)     | minor rock stratigraphic unit comprising some portion of a formation                                                                                                                          |

| palaeochannel                          | a channel that is no longer part of the contemporary fluvial system, i.e. has been abandoned or buried                                                                                                                      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| permeability                           | the property or capacity of a porous rock, sediment or soil for transmitting water                                                                                                                                          |
| potentiometric<br>surface              | a surface of equal hydraulic heads or potentials, typically depicted by a map of equipotentials such as a map of watertable elevations                                                                                      |
| renewable<br>resource<br>(groundwater) | groundwater extracted from an aquifer that receives recharge from rivers, rainfall or from other aquifers                                                                                                                   |
| salinity                               | a measure of the concentration of total dissolved solids (TDS)<br>in water (DoW 2014a)<br>0–500 mg/L, fresh<br>500–1000 mg/L, marginal<br>1000–3000 mg/L, brackish<br>3000–35 000 mg/L, saline<br>>35 000 mg/L, hypersaline |
| seepage                                | water that seeped or leaked through a porous soil                                                                                                                                                                           |
| semi-confined<br>aquifer               | an aquifer lying between strata of low permeability (aquitards) where the aquitards restrict, but don't prevent, groundwater movement                                                                                       |
| specific yield                         | the ratio of the volume of water that a given mass of saturated<br>rock or soil yields by gravity to the volume of that mass (this<br>ratio may be expressed as a percentage)                                               |
| storage                                | the estimated volume of water contained in an aquifer                                                                                                                                                                       |
| stratigraphy                           | the science of rock strata: concerned with original succession<br>and age relations of rock strata and their form, distribution,<br>lithology, fossils, geophysical and geochemical properties                              |
| subcrop                                | to lie directly beneath another geological unit                                                                                                                                                                             |
| surface water                          | water flowing over the landscape, held in estuaries, rivers and wetlands or collected in a dam or reservoir                                                                                                                 |
| total dissolved solids                 | a term that expresses the quantity of dissolved material in water, usually determined by weighing the residue after evaporating a sample of known volume at 180°C                                                           |
| unconfined<br>aquifer                  | an aquifer with a free watertable or phreatic level at at atmospheric pressure                                                                                                                                              |
| watertable                             | the surface of a body of unconfined groundwater at which the pressure is equal to that of the atmosphere                                                                                                                    |
| yield                                  | sustainable rate at which a bore or well can be pumped                                                                                                                                                                      |

## References

- Clarke JDA, Gammon PR, Hou B & Gallagher SJ 2003, 'Middle to Upper Eocene stratigraphic nomenclature and deposition in the Eucla Basin', *Australian Journal of Earth Sciences*, vol. 50, pp231–248.
- De Silva J, Wallace-Bell P, Yesertener C & Ryan S 2013, Perth regional aquifer modelling system (PRAMS) v 3.5 – conceptual model, Hydrogeological report series, HR334, Department of Water, Government of Western Australia, Perth (unpublished).
- Department of Water (DoW) 2014a, *Great Southern regional water supply strategy,* Department of Water, Government of Western Australia, Perth.
- Department of Water (DoW) 2014b, *Water Resources Inventory 2014,* Department of Water, Government of Western Australia, Perth.
- Diamond RE 2001, Groundwater resource potential of the Albany hinterland, Department of Water, Hydrogeological record series, HR137, Government of Western Australia, Perth (unpublished).
- Fugro Airborne Surveys 2013, South West Coastal Plain and South Coast, Western Australia TEMPEST airborne geophysical survey, acquisition and processing report for Geoscience Australia, report to the Department of Water (unpublished).
- Gammon PR, James NP, Clarke JDA & Bone Y 2000, 'Sedimentology and lithostratigraphy of Upper Eocene sponge-rich sediments, southern Western Australia', *Australian Journal of Earth Sciences*, vol. 47, pp1087–1103.
- Great Southern Development Commission (GSDC) 2014, Great Southern regional blueprint, Government of Western Australia, Perth.
- Healy RW & Cook PG 2002, 'Using groundwater levels to estimate recharge', *Hydrogeology Journal,* vol. 10, Issue 1, pp91–109.
- Hem JD 1970, 'Study and interpretation of the chemical characteristics of natural water', *Geological Survey Water Supply Paper*, 2254, US Geological Survey, Alexandria.
- Hingston FJ & Gailitis V 1976, 'The geographic variation of salt precipitated over Western Australia', *Australian Journal of Soil Research*, 14, pp319–35.
- Kern, AM 2007, Hydrogeological assessment of the western South Coast region, Hydrogeological report series, HR260, Department of Water, Government of Western Australia, Perth (unpublished).
- Leaney F, Crosbie R, O'Grady A, Jolly I, Gow L, Davies P, Wilford J & Kilgour P 2011, *Recharge and discharge estimation in data poor area,* Scientific reference guide, CSIRO Water for a Healthy Country National Research Flagship, Australia.

- Mira Geoscience 2016, Interpretation of TEMPEST Airborne Electromagnetic Data from the Albany hinterland, Western Australia, report to the Department of Water (unpublished).
- Quilty PG 1969, 'Upper Eocene planktonic Foraminifera from Albany, Western Australia', *Journal of the Royal Society of Western Australia,* vol. 52, pp41–58.
- Quilty PG 1981, 'Late Eocene benthic Foraminifera, south coast, Western Australia', Journal of the Royal Society of Western Australia, vol. 64, pp79–100.
- Ryan SA, Yesertener C & Maughan A 2017, Albany Aquifer Modelling System (AAMS) – conceptual model, Hydrogeological report series, HR377, Department of Water, Government of Western Australia, Perth (unpublished).
- SILO 2016, SILO climate database, Queensland Government Department of Science, Information Technology and Innovation, retrieved 13 July 2016 from: https://www.longpaddock.qld.gov.au/silo/
- Smith R 1997, *Hydrogeology of the Mount Barker–Albany 1:250:000 sheet,* Hydrogeological map explanatory notes series, HM1, Water and Rivers Commission, Government of Western Australia, Perth.
- Yesertener C 2009, Assessment of net recharge rates changes to response of groundwater level within the Gnangara groundwater mound, Hydrogeological record series, HR269, Department of Water, Government of Western Australia, Perth (unpublished).

Department of Water and Environmental Regulation Level 4 The Atrium 168 St Georges Terrace Perth WA Postal: Locked Bag 33 Cloisters Square Perth WA 6850 Phone: 08 6364 7600 Fax: 08 6364 7601 National Relay Service 13 36 77 dwer.wa.gov.au 12709 00 0817